Espaces de Kuranishi du (n)-tore

Théo JAMIN
14 février 2022

Laboratoire angevin de recherche en mathématiques — Université d'Angers



Faire une introduction a la théorie des déformations.

Comprendre le théoréme de Kuranishi et |'application de

Kodaira-Spencer.

Appliquer ces résultats sur I'exemple du (n-)tore.



Introduction

Variété différentiable compacte

"Une variété différentiable compacte est obtenue en recollant un
nombre fini d'ouverts de R" par des diffeomorphismes."

Variété complexe compacte

"Une variété complexe compacte est obtenue en recollant un nombre
fini d'ouverts de C" par des biholomorphismes."



Introduction

On paramétre les recollements par t et on note les variétés obtenues par
Xz. Alors

La variété différentiable X; est la méme que X.

La structure complexe sur X; n'est pas la méme que celle de X,
pour t aussi proche de 0 que I'on veut.

Etant donné une variété complexe X, la théorie des déformations, c'est
exactement |'étude des structures complexes sur X; pour des t proches
de 0.



Formellement, qu’est-ce qu’'une
déformation ?



éformation de structures complexes

Soit X une variété complexe compacte.

| |

i i

| |

Une déformation de X est la donnée de ; ;
p: A4 — B un morphisme lisse et propre entre | |
1 |

deux variétés complexes . et B et d'un point
be B tel que p’l(b) soit biholomorphe a X.

Pensez a .4 comme étant

{X¢|t € B} comme construit dans I'introduction. v B

Figure 1 — Déformation

Il faudrait expliciter le biholomorphisme entre p’l(b)

et X mais nous considérerons que c’est I'identité.



Difféeomorphismes entre fibres

Lemme de fibration d’Ehresmann
Soit f: M~ N une submersion surjective propre de classe au moins c?
entre deux variétés alors f : M+— N est une fibration localement

triviale.

En considérant une déformation p:.# — B d'une variété compacte
complexe X, ce résultat nous dit que localement toutes les fibres pfl(s)
(s € B) sont diffeomorphes mais pas nécessairement biholomorphes a |a
fibre centrale p~1(b) = X.



Application au tore : rappels

Un tore complexe de dimension 1 est donné par un réseau dans C :
V11,72 €C* on peut écrire I7, 1, =C/(T1Z x 12Z)

Cependant, en multipliant par TI]', on se raméne a |'étude du tore
gJ'=C/(zx 121112) qui est biholomorphe a 9. On peut donc
restreindre |'étude des tores a un seul paramétre dans C*.



Application au tore : construction d'une déformation

Etant donné 7 € C*, on considére le tore correspondant 7.

Pour construire une déformation de 97, on peut considérer |'espace des
paramétres B comme étant un ouvert dans C* contenant 7. Et pour
chaque élément b€ B, considerer la fibre J73.

Formellement :
une déformation du tore J; est donné par

p:(CxB)/G— (B, 1)

avec
c {gm,n:CxB»—>CXB

(z,0) —(z+mw+n, w) }(m n)ez?



Résultat principal de la théorie
des déformations



Théoréme de Kuranishi (Blackbox)

Théoréme de Kuranishi

Soit X une variété complexe compacte alors il existe une déformation
7. K —(K,0) de X qui soit :

o Localement compléte.
Toutes les déformations infinitésimales de X se retrouvent dans # et K via un

morphisme.

o Verselle.
Le morphisme en question n'est pas unique mais sa différentielle |'est au point

marqué.

Nous appellerons 7 : # — (K,0) la famille de Kuranishi et K I'espace de
Kuranishi.



Explication en dessin

X X
M H
p b4
¢
B K
I " R . " -
b 0

Figure 2 — Une déformation quelconque et la famille de Kuranishi



Question a 1000 points

Soit X une variété complexe compacte.

Etant donné une déformation p: % — (B,0) de X, comment savoir si
elle vérifie les conditions pour étre la famille de Kuranishi de X 7

Elle n'est pas unique, mais tant pis, ici nous ferons tout comme.
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Critéres pratiques de
complétude et versalité



éformations infinitésimales

Pour parler d'espace de module local de structures complexes d'une
variété complexe compacte X, on a besoin de regarder les déformations
proches de la structure initiale : les déformations infinitésimales.

Les travaux de Kodaira et Spencer ont permis de dire que les
déformations infinitésimales sont décrites (a isomorphisme prés) par un
espace vectoriel : H!(X,0).
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Construction de H'(X,0)




Germes, faisceaux

Soient f et g deux fonctions définies sur un ouvert U de C". On dit que
f et g sont équivalentes en p € U si il existe un voisinage de p sur lequel
f et g coincident.

Germe de fonction

Un germe de fonction en p est une classe d’équivalence de fonctions pour
la relation précédente.

On note G, I'ensemble des germes de fonctions holomorphes en p.

Faisceaux

Le faisceaux des germes de fonctions holomorphes sur une variété

compacte complexe X est définit par 0 = | 0.
peX
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Champs de vecteurs holomorphes

Soit X une variété complexe compacte de dimension n et {U;};¢; des
ouverts recouvrants X (que I'on identifie a des ouverts de C" par définition des

variétés complexes).

Champs de vecteurs holomorphes
Un champ de vecteur holomorphe 6 sur X est donné par une famille de
fonctions holomorphes {9,‘-"} sur les U; et

n « a
0=y 0%p)—
0;1 1 (p)aza

]

ou les (z,-l,~-- ,z]') sont les coordonnées sur U;.
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© faisceau des germes de champs de vecteurs holomorphes

En utilisant les deux derniéres slides, on définit le faisceau des germes
de champs de vecteurs sur une variété complexe compacte X. On
notera ce faisceau O.
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La suite fondamentale

Soient X une variété complexe compacte et p: .4 — (B,0) une
déformation de X (pensez a .44 = (X;|t ¢ B}). On considére alors :

o V¥ le faisceau des germes de champs de vecteurs sur .

o O le faisceau des germes de champs de vecteurs sur .4 tangents aux
fibres de p (donc aux X;).

o A le faisceau quotient ¥/0.

Suite fondamentale

On a alors la suite exacte courte suivante :

0—m0O—VY¥Y—A—0
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Application de Kodaira-Spencer

On associe a la suite fondamentale précédente la suite exacte longue
en cohomologie (Cech) :

0— HO(tt,0) — HO(tt, W) — HO(tl,\)— H(M,0)— -

On s'intéresse a |'application connectante &: HO(.4, A) — H(.4,0©)
Par définition des faisceaux, il est tout a fait possible de les restreindre
sur des ouverts de p~(U) avec U un ouvert de 0 dans B et d’en prendre
la limite directe, i.e. :

8o : H (1o, Alo) — H* (4 10,0l0)

J'ai noté M|y pour (//?{\p 1(0) pour la clarté et de méme pour les faisceaux.
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Application de Kodaira-Spencer

Lemmes

o My=X.
o ToB= HO(./%Q,AO).

o O est le faisceau des germes de champs de vecteurs tangents a X.

Application de Kodaira Spencer
On appelle application de Kodaira Spencer, |'application

KS: ToB— HY(X,0)
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Théorie de Kodaira-Spencer (Blackbox)

Critéres de complétude et de versalité

o Si I'application de Kodaira Spencer est surjective alors la
déformation est compléte en 0 € B.

o Si I'application de Kodaira Spencer est injective alors la
déformation est verselle.
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KS explicité

Soit {U;} un recouvrement de . et (zl-l,m ,z,-”,tl,--- ,tM)=(z,t) les
coordonnées locales sur U; telles que p(z,t) =t avec des recollements
(changements de cartes) holomorphes fj;, c'est a dire zj“ = f/.J‘."(z,-,t).

Alors, I'application KS est donné par :

KS: ToB— HY(X,0)
0

& — {6’]}

n ofi(zi,t)| 0
Y e
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Application au tore : KS

Reprenons la déformation du tore :
p:(CxB)/G—(B,T), G={gmn:(z,0)— (z+mw+n, )},

On se donne {U;} un recouvrement de (C x B)/G et des coordonnées
locales (z;,w) sur chaque {U;}.

Les changements de cartes sont donnés par z; = f;j(zj,w) = zj + mjjw + nj;
avec mj; et nj; des entiers rationnels.

On peut donc écrire I'application KS :

KS: T;B—HY(T7,0,)
) 0

et vérifier que c’est un isomorphisme. (Pas si évident que ca, il nous faudrait

I'isomorphisme de Dolbeault mais cela nous ménerai trop loin.)
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Application au tore : conclusion

Espace de Kuranishi du tore

Soit TeC* et I le tore correspondant.
La famille : (Cx B)/G — (B, 1) est

Compléte en 7.

Verselle en 7.
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emarques et corollaires

Quelques remarques

o Le travail fait pour le tore ici n'est pas une avancée mathématiques
en soit puisque |'on connait |'espace de module global du tore. I/ est

donné par un domaine fondamental de H = {z|.#(z) > 0} sous I'action de PSL5(C).

o Cependant on peut faire la méme chose (avec des calculs beaucoup plus
longs) pour le tore de dimension n et 13 c'est une vrai avancée !
C'était d'ailleurs dans un des articles de Kodaira et Spencer de 1958.
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Merci de votre attention !

23



	Formellement, qu'est-ce qu'une déformation ?
	Résultat principal de la théorie des déformations
	Critères pratiques de complétude et versalité
	Construction de H1(X,)

