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Objectifs

• Faire une introduction à la théorie des déformations.

• Comprendre le théorème de Kuranishi et l’application de
Kodaira-Spencer.

• Appliquer ces résultats sur l’exemple du (n-)tore.
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Introduction

Variété différentiable compacte
"Une variété différentiable compacte est obtenue en recollant un
nombre fini d’ouverts de Rn par des difféomorphismes."

Variété complexe compacte
"Une variété complexe compacte est obtenue en recollant un nombre
fini d’ouverts de Cn par des biholomorphismes."
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Introduction

On paramètre les recollements par t et on note les variétés obtenues par
Xt . Alors

• La variété différentiable Xt est la même que X .

• La structure complexe sur Xt n’est pas la même que celle de X ,
pour t aussi proche de 0 que l’on veut.

Étant donné une variété complexe X , la théorie des déformations, c’est
exactement l’étude des structures complexes sur Xt pour des t proches
de 0.
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Formellement, qu’est-ce qu’une
déformation ?



Déformation de structures complexes

M

X ' p−1(b)

BU

b

p

Figure 1 – Déformation

Soit X une variété complexe compacte.
Une déformation de X est la donnée de
p :M 7−→B un morphisme lisse et propre entre
deux variétés complexes M et B et d’un point
b ∈B tel que p−1(b) soit biholomorphe à X .

Pensez à M comme étant
{Xt |t ∈B} comme construit dans l’introduction.

Il faudrait expliciter le biholomorphisme entre p−1(b)
et X mais nous considérerons que c’est l’identité.
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Difféomorphismes entre fibres

Lemme de fibration d’Ehresmann

Soit f :M 7−→N une submersion surjective propre de classe au moins C2

entre deux variétés alors f :M 7−→N est une fibration localement
triviale.

En considérant une déformation p :M 7−→B d’une variété compacte
complexe X , ce résultat nous dit que localement toutes les fibres p−1(s)

(s ∈B) sont difféomorphes mais pas nécessairement biholomorphes à la
fibre centrale p−1(b)=X .
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Application au tore : rappels

Un tore complexe de dimension 1 est donné par un réseau dans C :
∀τ1, τ2 ∈C∗ on peut écrire Tτ1,τ2 =C/(τ1Z×τ2Z)

Cependant, en multipliant par τ−1
1 , on se ramène à l’étude du tore

T ′ =C/(Z×τ2τ
−1
1 Z) qui est biholomorphe à T . On peut donc

restreindre l’étude des tores à un seul paramètre dans C∗.
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Application au tore : construction d’une déformation

Etant donné τ ∈C∗, on considère le tore correspondant Tτ.
Pour construire une déformation de Tτ, on peut considérer l’espace des
paramètres B comme étant un ouvert dans C∗ contenant τ. Et pour
chaque élément b ∈B, considerer la fibre Tb.

Formellement :
une déformation du tore Tτ est donné par

p : (C×B)/G 7−→ (B , τ)

avec

G =
{
gm,n :C×B 7−→C×B

(z ,ω) 7−→(z +mω+n, ω)

}
(m,n)∈Z2
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Résultat principal de la théorie
des déformations



Théorème de Kuranishi (Blackbox)

Théorème de Kuranishi
Soit X une variété complexe compacte alors il existe une déformation
π :K 7−→ (K ,0) de X qui soit :

• Localement complète.
Toutes les déformations infinitésimales de X se retrouvent dans K et K via un

morphisme.

• Verselle.
Le morphisme en question n’est pas unique mais sa différentielle l’est au point

marqué.

Nous appellerons π :K 7−→ (K ,0) la famille de Kuranishi et K l’espace de
Kuranishi.
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Explication en dessin

M

X

Φ

∼

K

X

BU

b

φ

Kφ(U)

0

p π

Figure 2 – Une déformation quelconque et la famille de Kuranishi
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Question à 1000 points

Soit X une variété complexe compacte.

Etant donné une déformation p :M 7−→ (B ,0) de X , comment savoir si
elle vérifie les conditions pour être la famille de Kuranishi de X ?

Elle n’est pas unique, mais tant pis, ici nous ferons tout comme.
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Critères pratiques de
complétude et versalité



Déformations infinitésimales

Pour parler d’espace de module local de structures complexes d’une
variété complexe compacte X , on a besoin de regarder les déformations
proches de la structure initiale : les déformations infinitésimales.

Les travaux de Kodaira et Spencer ont permis de dire que les
déformations infinitésimales sont décrites (à isomorphisme près) par un
espace vectoriel : H1(X ,Θ).

11



Construction de H1(X ,Θ)



Germes, faisceaux

Soient f et g deux fonctions définies sur un ouvert U de Cn. On dit que
f et g sont équivalentes en p ∈U si il existe un voisinage de p sur lequel
f et g coïncident.

Germe de fonction
Un germe de fonction en p est une classe d’équivalence de fonctions pour
la relation précédente.

On note Op l’ensemble des germes de fonctions holomorphes en p.

Faisceaux
Le faisceaux des germes de fonctions holomorphes sur une variété
compacte complexe X est définit par O = ⋃

p∈X
Op.
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Champs de vecteurs holomorphes

Soit X une variété complexe compacte de dimension n et {Ui }i∈I des
ouverts recouvrants X (que l’on identifie à des ouverts de Cn par définition des

variétés complexes).

Champs de vecteurs holomorphes
Un champ de vecteur holomorphe θ sur X est donné par une famille de
fonctions holomorphes {θαi } sur les Ui et

θ =
n∑

α=1
θαi (p)

∂

∂zαi

où les (z1
i , · · · ,zni ) sont les coordonnées sur Ui .
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Θ faisceau des germes de champs de vecteurs holomorphes

En utilisant les deux dernières slides, on définit le faisceau des germes
de champs de vecteurs sur une variété complexe compacte X . On
notera ce faisceau Θ.
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La suite fondamentale

Soient X une variété complexe compacte et p :M 7−→ (B ,0) une
déformation de X (pensez à M = {Xt |t ∈B}). On considère alors :

• Ψ le faisceau des germes de champs de vecteurs sur M .

• Θ le faisceau des germes de champs de vecteurs sur M tangents aux
fibres de p (donc aux Xt).

• Λ le faisceau quotient Ψ/Θ.

Suite fondamentale
On a alors la suite exacte courte suivante :

0 7−→Θ 7−→Ψ 7−→Λ 7−→ 0

15



Application de Kodaira-Spencer

On associe à la suite fondamentale précédente la suite exacte longue
en cohomologie (Cěch) :

0 7−→H0(M ,Θ) 7−→H0(M ,Ψ) 7−→H0(M ,Λ) 7−→H1(M ,Θ) 7−→ ·· ·

On s’intéresse à l’application connectante δ :H0(M ,Λ) 7−→H1(M ,Θ)

Par définition des faisceaux, il est tout à fait possible de les restreindre
sur des ouverts de p−1(U) avec U un ouvert de 0 dans B et d’en prendre
la limite directe, i.e. :

δ0 :H
0(M |0,Λ|0) 7−→H1(M |0,Θ|0)

J’ai noté M |0 pour M |p−1(0) pour la clarté et de même pour les faisceaux.
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Application de Kodaira-Spencer

Lemmes

• M0 =X .

• T0B 'H0(M0,Λ0).

• Θ0 est le faisceau des germes de champs de vecteurs tangents à X .

Application de Kodaira Spencer
On appelle application de Kodaira Spencer, l’application

KS :T0B 7−→H1(X ,Θ)

17



Théorie de Kodaira-Spencer (Blackbox)

Critères de complétude et de versalité

• Si l’application de Kodaira Spencer est surjective alors la
déformation est complète en 0 ∈B.

• Si l’application de Kodaira Spencer est injective alors la
déformation est verselle.
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KS explicité

Soit {Ui } un recouvrement de M et (z1
i , · · · ,zni ,t1, · · · ,tm)= (z ,t) les

coordonnées locales sur Ui telles que p(z ,t)= t avec des recollements
(changements de cartes) holomorphes fij , c’est à dire zαj = f αij (zi ,t).

Alors, l’application KS est donné par :

KS :T0B 7−→H1(X ,Θ)

∂

∂t
7−→ {θij }

où θij =
n∑

α=1

∂fij (zj ,t)

∂t

∣∣∣∣
t=0

∂

∂zαi
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Application au tore : KS

Reprenons la déformation du tore :

p : (C×B)/G 7−→ (B , τ), G = {
gm,n : (z ,ω) 7−→ (z +mω+n, ω)

}
(m,n)∈Z2

On se donne {Ui } un recouvrement de (C×B)/G et des coordonnées
locales (zi ,ω) sur chaque {Ui }.
Les changements de cartes sont donnés par zi = fij (zj ,ω)= zj +mijω+nij
avec mij et nij des entiers rationnels.
On peut donc écrire l’application KS :

KS :TτB 7−→H1(Tτ,Θτ)

∂

∂ω
7−→{mij

∂

∂ω
}

et vérifier que c’est un isomorphisme. (Pas si évident que ça, il nous faudrait

l’isomorphisme de Dolbeault mais cela nous mènerai trop loin.)
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Application au tore : conclusion

Espace de Kuranishi du tore
Soit τ ∈C∗ et Tτ le tore correspondant.
La famille : (C×B)/G 7−→ (B , τ) est

• Complète en τ.

• Verselle en τ.
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Remarques et corollaires

Quelques remarques

• Le travail fait pour le tore ici n’est pas une avancée mathématiques
en soit puisque l’on connait l’espace de module global du tore. Il est
donné par un domaine fondamental de H= {z |I (z)> 0} sous l’action de PSL2(C).

• Cependant on peut faire la même chose (avec des calculs beaucoup plus

longs) pour le tore de dimension n et là c’est une vrai avancée !
C’était d’ailleurs dans un des articles de Kodaira et Spencer de 1958.
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Merci de votre attention !
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