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Groupes simples

Un groupe G est dit simple si les seuls sous-groupes normaux
de G sont {e} et lui méme.
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EE%EE: . Si G n'est pas un simple, alors |'existence d'un groupe normal
simples. N permet de construire le quotient G/N et I'étude de G peut
se ramener a |'étude de N et celle de G/N. En itérant ce
procédé, on peut "décomposer” I'étude d'un groupe a ses

sous-groupes normaux qui sont des groupes simples.
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deux suites de compositions de G. Alors m = n et

{h/lo, - In/lh—1} = {h/do -, Im/Im-1}

a permutation et isomorphismes pres.

On appellera JH(G) I'ensemble des groupes quotients
successifs d'une suite de composition de G, a permutation et a
isomorphismes pres.
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1< G <G 1< G<=G

dont on récupére JH(G) = {C,, C3} comme ensemble des

quotients successifs.
D’'autre part, on peut vérifier que JH(Ds) = JH(GCs).




Histoire d'une

classification :

une guerre de
30 ans, un
Monstre et

des

connexions
inexpliquées

Théo JAMIN

Définitions et
intérét des
groupes
simples.

La ou s'arréte la comparaison (pour aller plus loin)

Extension de groupe
Soient N et @ deux groupes. Une extension de @ par N est
une suite exacte

1-NS5GC>Q—1

telle que ¢(/N) soit un sous-groupe normal de G et Q ~ G/.(N).
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Extension de groupe

Soient N et @ deux groupes. Une extension de @ par N est
une suite exacte

1-NS5GC>Q—1

telle que ¢(/N) soit un sous-groupe normal de G et Q ~ G/.(N).

Soient | et J deux groupes simples.
Trouver un groupe G dont JH(G) = {/, J}, revient a trouver
une extension de J par /.
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Théoreme

Soient N et @ deux groupes.
Les classes d'équivalence d'extensions de @ par N sont en
bijection avec H?(Q, N).

En général, H?(Q, N) n'est pas nul et il existe donc plusieurs
extensions.
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Résumé de l'intéret

Histoire d'une

classification : . .

une guerre de Soient Q et N des groupes finis simples et G un groupe fini.

ans, un

Monstre et
des

+ A partir de G, on a une "décomposition” en groupes

Gl simples, unique a permutation et isomorphismes prés, via
T AT JH(G).

Définitions et — Etant donné une décomposition, il est possible de trouver
interét des G’ % G tel que JH(G) = JH(G').

groupes
simples.

+ Via I'étude de la cohomologie, on peut retrouver toutes les
extensions et par conséquent tout les G’ tels que
JH(G) = FH(G").
On en arrive aux questions :
@ Donner une classification des groupes finis simples.

@ Donner toutes les extensions de @ par .
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Groupes alternés

Le groupe alterné A, est le sous-groupe de S, obtenu par les
permutations dont la signature est 1.
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Proposition

Le groupe A, est simple pour n > 5.
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Un groupe fini G est dit de type Lie s'il est définit comme
I'ensemble des FF,-points d'un groupe algébrique réductif et
connexe G fixés par un endomorphisme de Steinberg, ou
Quites comme sous-groupe normal d'un tel groupe ou encore comme
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Pas si simple...
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Théoreme de Chevalley

Théo JAMIN
Les groupes réductifs (sur un quelconque corps algébriquement

BN

clos) sont classifiés, a isomorphismes prés, par leur systéme de
racines.

Quelques . .
définitions le En prath ue :
théoréeme de

ey [l n'existe une multitude de caractérisation de ces groupes,
comme |'existence d'une (B, N)-structure, les points rationnels
d'un groupe de Lie etc.
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Classification des groupes finis simples

Un groupe fini simple appartient a I'une (au moins) des familles
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@ Les groupes cycliques C,, avec p premier,

o Les groupes alternés A, avec n > 5,
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La classification

Classification des groupes finis simples

Un groupe fini simple appartient a I'une (au moins) des familles
suivantes :
@ Les groupes cycliques C,, avec p premier,

o Les groupes alternés A, avec n > 5,

@ Les groupes finis de type Lie,
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Classification des groupes finis simples

Un groupe fini simple appartient a I'une (au moins) des familles
suivantes :
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@ Les groupes cycliques C,, avec p premier,

Les groupes alternés A, avec n > 5,

]
Quelques o . a
définitions le @ Les groupes finis de type Lie,
théoreme de
classification. [

Les 26 groupes sporadiques.

Pourquoi 26 7 Et bien, il faut lire la preuve...
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Théoréeme de Feit-Thompson

Si G est un groupe fini, simple et d’ordre impair alors il est
cyclique.

Méme si ce théoréme ne résout pas le probléme de classification
La guerre de des groupes finis simples, les techniques utilisées dans la preuve
30 ans . R . . e

joueront un role essentiel dans la suite de I'histoire.
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Une nouvelle technique : Centralisateur

d'involution

Histoire d'une
eabaelll  Soit G un groupe fini et simple.
une guerre de
30 ans, un
Monstre et
des
connexions

e e o Un élément t est appelé involution si t2 = e,

Définitions

D JANIR o on appelle centralisateur de g € G le groupe Cg(g) formé
des éléments qui commute a g.

Théoreme de Brauer-Fowler
Soit t une involution d'un groupe G fini et simple. Alors,

La guerre de |CG(t>‘ = n — |G| < (2[72)'
30 ans

En particulier, si on fixe un groupe C, il n'existe qu'un nombre
fini de groupes finis et simples qui ont C comme centralisateur
d'involution.
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Annonce prématurée puisqu'il faudra attendre 2004 pour
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Et finalement, en 2008 un autre (et dernier ?) gap sera comblé
par deux autres mathématiciens.
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Parmis les auteurs de la preuve, on peux citer :

Jordan, Sylow, Hélder, Cole, Frobenius, Burnside, Dickson,
Brauer, Zassenhaus, Chevalley, Thompson, Feit, Gorenstein,

La guere de Janko, Conway, Fischer, Aschbacher, Griess...
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Avant 1900, E. Mathieu s’intéresse aux groupes k-transitifs :

Théo JAMIN

Un groupe G est dit k-transitif si pour toute paire de k-uplet
(a1, ,ax), (b1, -, by) d'éléments distincts deux a deux, il
existe un élément g € G tel g.a; = b;.

Il s’intéressa alors a des sous-groupes k-transitif de groupes de
permutations et trouva cinq groupes M, — S,,, pour
n=11,12,22,23 ou 24 et sont donc les 5 premiers groupes
sporadiques decouverts.

Groupes
sporadiques.
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Intéréts :
@ Théoréme de Sylow : Pout tout premier p de multiplicité
n dans la décomposition de 'ordre de G, il existe un
p-sous-groupe de Sylow.
@ Théoréme de Burnside : si G est un groupe simple
contenant un p-sous groupe de Sylow cyclique alors
Groupes
sporaF:iiques. |G| = p

@ etc.
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Soit G un groupe fini tel que
@ Les sous-groupes 2-Sylow de G sont abélien,
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@ G contient une involution t tel que Cg(t) soit isomorphe a
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Théer

Soit G un groupe fini tel que
@ Les sous-groupes 2-Sylow de G sont abélien,
@ G n’'a pas de sous-groupe d'indice 2,

@ G contient une involution t tel que Cg(t) soit isomorphe a
Cy x PSL(2,q), avec g > 3 une puissance d'un nombre
premier.

Groupes

sporadiques. Alors G est Simp|e, q — 32"+1Y n > 1

Il réussit a le démontrer en supposant g > 5.
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Si G est un groupe simple avec un centralisateur d'involution
isomorphe a C> x As et G contient un 2-Sylow sous-groupe
abélien d'ordre 8 alors G est d'ordre 175560. De plus s'il existe
il est unique, a isomorphisme pres.
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30 ans, un

Monstre et exemples de groupes vérifiant ce théeréme pour g = 5 et
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Si G est un groupe simple avec un centralisateur d'involution
isomorphe a C> x As et G contient un 2-Sylow sous-groupe
abélien d'ordre 8 alors G est d'ordre 175560. De plus s'il existe
il est unique, a isomorphisme pres.

Sur des constructions similaires, il aboutit a I'existence d'autres
groupes, sans pouvoir en trouver la preuve expérimentale.
D'autres mathématiciens finiront, plus tard, par exhiber des
générateurs de ces groupes nommés Jp, J3 et Js.

Groupes
sporadiques.
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Représentation

Soit V un C-espace vectoriel et G un groupe. Une
représentation de G est la donnée d'un morphisme de G dans
GL(V).
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de sous-espace W < V tel que p|y soit une représentation de
G.
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Groupes
sporadiques.

Représentations

Quelques mois aprés ce travail il réussit a exhiber une
représentation fidele de J1.

Représentation

Soit V un C-espace vectoriel et G un groupe. Une
représentation de G est la donnée d'un morphisme de G dans
GL(V).

On dit qu'une représentation p est irréductible s'il n'existe pas
de sous-espace W < V tel que p|y soit une représentation de
G.

Une représentation est fidéle si son noyau est réduit a {e}.

Proposition

Les représentations irréductibles de G sont en bijection avec les
classes de conjugaison de G.
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Il existe un unique réseau, noté Ap4 vérifiant :
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@ Ap4 est engendré par les colonnes d’'une matrice de
determinant 1,

@ Le carré de la longueur de tout vecteur de Apg est un
entier pair,

@ La longueur de tout vecteur (non nul) de Ap4 est au moins
2.
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Réseau de Leech
Il existe un unique réseau, noté Ap4 vérifiant :
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@ Ap4 est engendré par les colonnes d’'une matrice de
determinant 1,

@ Le carré de la longueur de tout vecteur de Apg est un

entier pair,
@ La longueur de tout vecteur (non nul) de A4 est au moins
2.
v
Groupes
di b ,. 7
sPoraciques Un an plus tard, J. Conway s'intéressa au groupe

d’'automorphismes de ce réseau et trouva les groupes Co;, Co
et Cos qui sont simples et sporadiques.
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246 320 59 76 112 133 17.19.23.29.31.41.47.59.71 ~ 8.10°*.

Et réussirent a construire ce groupe comme groupe
d’'automorphisme d'une algebre de dimension 196884 et un
dernier résultat de Norton a permis de prouver |'unicité de ce
groupe et avec ¢a, conclure la classification.
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246 320 59 76 112 133 17.19.23.29.31.41.47.59.71 ~ 8.10°*.

Et réussirent a construire ce groupe comme groupe
d’'automorphisme d'une algebre de dimension 196884 et un
dernier résultat de Norton a permis de prouver |'unicité de ce
groupe et avec ¢a, conclure la classification.

lls appellent ce groupe, le groupe Monstre M.

La capture du
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congruences, par exemple :
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Groupes de Hecke

Le n-ieme groupe de congruence de Hecke est définit par

Fo(n) = {(i Z) c= O[n]} < SLy(2Z)
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connexions



1 - Groupes fondamentaux de surfaces
hyperboliques

Histoire d'une

classification :

une guerre de
30 ans, un
Monstre et

des Surface de genre 0 et groupe de Hecke

connexions

inexpliquées Soit S une surface hyperbolique dont le groupe fondamental
Théo JAMIN est isomorphe au normalisateur d'un groupe de Hecke. Alors, S
est de genre 0 si, et seulement si, n est un nombre premier
intervenant dans la décomposition de I'ordre du groupe
Monstre.

Des
connexions



1 - Groupes fondamentaux de surfaces
hyperboliques

Histoire d'une

classification :

une guerre de
30 ans, un
Monstre et

des Surface de genre 0 et groupe de Hecke

connexions

inexpliquées Soit S une surface hyperbolique dont le groupe fondamental
Théo JAMIN est isomorphe au normalisateur d'un groupe de Hecke. Alors, S
est de genre 0 si, et seulement si, n est un nombre premier
intervenant dans la décomposition de I'ordre du groupe
Monstre.

La connexion avec le groupe Monstre n'est pas du tout faite
dans la preuve.

Des
connexions



1 - Groupes fondamentaux de surfaces
hyperboliques

Histoire d'une

classification :

une guerre de
30 ans, un
Monstre et

des Surface de genre 0 et groupe de Hecke

connexions

inexpliquées Soit S une surface hyperbolique dont le groupe fondamental
Théo JAMIN est isomorphe au normalisateur d'un groupe de Hecke. Alors, S
est de genre 0 si, et seulement si, n est un nombre premier
intervenant dans la décomposition de I'ordre du groupe
Monstre.

La connexion avec le groupe Monstre n'est pas du tout faite
dans la preuve.

D’ailleurs, pour ceux qui aiment le whisky, Andrew Ogg offre
une bouteille de Jack Daniel's a quiconque lui donnant ce lien.
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2 - Transformée de Fourier de fonction J -
Monstruous Moonshine

Histoire d'une

classification :

une guerre de
30 ans, un
Monstre et

des Soit 7 € C, Im(7) > 0, i.e. 7 € H. On peut construire un

Gl réseau A = Z @ 77 dans C et considérer le quotient C/A. Ce
Théo JAMIN quotient est un tore complexe noté T,.0On sait qu'il existe une
fonction j : HH — C qui détermine si deux tores sont
biholomorphes : j(7) = j(7') si, et seulement si, T, ~ T..
Conway calcula le développement de Fourier de cette fonction j

1
j(r) = p + 196884q + 21493760g° + 864299970g° + - - -
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l=n
196884 =r1 +
21493760 =y + rn + 13
864299970 =2 + 2+ 3+ n
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classification :
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30 ans, un

Monstre et étre exprimés en termes de combinaisons linéaires des

des
connexions dimensions des représentations irréductibles du groupe monstre
inexpliquées
M

Théo JAMIN

l=n
196884 =r1 +
21493760 = r1 + 1 + 3
864299970 =2 + 2+ 3+ n

Ce sera Richard Ewen Borcherds qui le démontra en 1992 et
recu la médaille Fields en partie pour ce travail.
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Merci de votre attention !
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