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Résumé

Soit Γ un sous-groupe discret co-compact et sans torsion de SL2(C). On sait depuis les travaux d’E.
Ghys [3] que l’espace de Kuranishi du quotient de SL2(C) par Γ est donné par le germe analytique de
la variété de représentation Hom(Γ, SL2(C)) pointée au morphisme trivial. L’idée centrale est de déformer
l’holonomie de la (SL2(C) × SL2(C), SL2(C))-structure naturelle de ces quotients afin d’obtenir de nouvelle
structures complexes. Depuis, les travaux de F. Kassel ont montré que l’ensemble des représentations qui
sont l’holonomie d’une telle (G,X)-structure complète (appelées admissibles), forme un ouvert de la variété
de représentation. On s’intéresse alors aux déformations des structures complexes des variétés obtenues par
la construction d’E. Ghys et on montre que la famille au dessus de la variété de représentations est complète
en tous points admissibles. De plus, modulo conjugaison, cette famille est verselle. Ce résultat nous amène
donc à considérer le champ quotient quotient des caractères admissibles et nous montrons que c’est un ouvert
dans le champ de Teichmüller de SL2(C)/Γ.

Introduction

Considérons G un groupe de Lie complexe, que l’on supposera connexe ainsi qu’un sous-groupe Γ discret
co-compact de G tel que G/Γ soit une variété complexe compacte.

Question 1 (Générale). On s’intéresse seulement à la structure complexe de ce quotient, en particulier :
Local

— Quelles sont les variations infinitésimales de
la structure complexe de G/Γ ?
i.e. on cherche les morphismes lisses propres
π : X → B entre espaces analytiques avec
π−1(b) C∞-difféomorphe à (G/Γ)diff .

i.e. Quel est son espace de Kuranishi ?

Global
— Quelles sont toutes les déformations de la

structure complexe de G/Γ ?
i.e. Quel est son espace de Teichmüller ?
— Surtout : peut-on trouver une structure

analytique sur cet espace ?

Exemple. Voici des cas déjà traités :
— G est résoluble, Nakamura détermine Kur(G/Γ) (en faisant la liste des Γ),
— G est nilpotent, Rollenske détermine Kur(G/Γ) (en donnant les équation dont le degré ne dépend que

de l’indice de nilpotence de G),
—

Théorème 1 (Raghunathan - 1966). Si G est semi-simple et sans facteur simple de rang 1 alors, la
structure complexe de G/Γ est rigide (i.e. Kur(G/Γ) = pt).
En particulier, ∀n ≥ 3, SLn(C)/Γ est rigide.

Question 2. Que se passe-t-il dans le cas G = SL2(C) ?

(G,X)-structure

Commençons par quelques rappels.

Définition. Soit M une variété et X une variété munit d’une action de G. Une (G,X)-structure est la donnée
d’un atlas Ui recouvrement de M par des ouverts et des applications φi : Ui → X tels que les changements de
cartes soient des restrictions d’éléments de G, i.e.

∀i, j, tels que Ui ∩ Uj 6= ∅, ∃gi,j ∈ G tel que φj ◦ φ−1
i = gi,j |Ui∩Uj

Proposition 1. Une (G,X)-structure est déterminée par une paire (hol,dev)

hol : π1(M)→ G, dev : M̃ → X (difféo local hol -équivariant )

Ce dictionnaire est à équivalence près (isomorphisme de (G,X)-structure 1 : 1 G-conjugaison de l’holono-
mie/pré-composition de dev)
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Exposé du 7 Juin 2021 PLAN

Revenons à notre cas d’étude SL2(C). Soit Γ ⊂ SL2(C) un sous-groupe discret co-compact et sans torsion.
La variété SL2(C)/Γ est naturellement munit d’une (SL2(C) × SL2(C),SL2(C))-structure, avec SL2(C) ×

SL2(C) agissant par multiplications gauche/droite sur SL2(C). Cette structure est complète (l’application
développante est un revêtement, et puisque SL2(C) simplement connexe, dev est un difféomorphisme global),
d’holonomie

h : Γ→ SL2(C)× SL2(C), γ 7→ (Id, γ)

Théorème 2 (Principe d’Ehresmann-Thurston). Si h′ est suffisamment proche (pour la topologie compacte-
ouverte sur une partie génératrice finie du π1(M)) du morphisme h, il existe une (G,X)-structure sur M
d’holonomie h′ et les (G,X)-structures définies sont difféomorphes si, et seulement si, h et h′ son conjugués
par un élémént de G.

Théorème 3 (Rigidité de Mostow). H1(Γ, sl2(C)ι) = 0, i.e. le plongement ι := pr2 ◦ h : Γ ↪→ SL2(C) est
rigide au sens où tout morphisme proche de ι lui est conjugué.

Résultats de Ghys

Soit ρ ∈ Hom(Γ,SL2(C)), considérons l’action

Γ× SL2(C)→SL2(C),

(γ, x) 7→ρ(γ)−1xγ

Dès que le quotient est une variété complexe compacte,
— On le note Mρ,
— ρ est dit admissible.

Remarques. Nous sommes dans un contexte particulier, principalement du à deux choses :
— Les variétés SL2(C)/Γ ne sont pas Kalhériennes.
— La forme de Killing sur sl2(C) est bi-invariante et descend au quotient Mρ. On a donc une métrique

riemanienne holomorphe sur Mρ.

Lemme 1 (Ghys - 1995). Si ρ ∈ Hom(Γ,SL2(C)) est suffisamment proche (pour une partie génératrice fixée
de Γ) de ρ0 alors ρ est admissible.

Théorème 4 (Ghys - 1995). Soit U un voisinage de ρ0. La famille tautologique

{Mη | η ∈ U ⊂ Hom(Γ,SL2(C))} =: Taut|U

U ⊂ Hom(Γ,SL2(C))

pointée au morphisme trivial ρ0 : Γ→ Id est
— complète : ∀ déformation p : X → (B, b) marquée,

X f∗ Taut|U Taut|U

B U

π

'

f

— verselle : dbf : TbB → Tf(b)U est unique (l’isomorphisme X ' f∗ Taut|U est unique).
De plus, tout automorphisme de Mρ s’obtient essentiellement comme une conjugaison par un élément g ∈

SL2(C) de ρ.
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1 Généralisation (locale)

On fixe une présentation de Γ
Γ := 〈γ1, · · · , γn |R1, · · · , Rm〉

Et on définit
R(Γ) :=

{
(g1, · · · , gn) ∈ SL2(C)n ⊂ C4n|Ri(g1, · · · , gn) = Id, 1 ≤ i ≤ m

}
Remarque.

— R(Γ) admet une structure d’espace analytique,
— R(Γ) ne dépend pas de la présentation de Γ,
— (construction de Weil :) TρR(Γ)Zar ' Z1(Γ, slρ2).

1.1 Admissibilité

On pose
R(Γ)adm := {(g1, · · · , gn) ∈ R(Γ) | ρ(γi) := gi, ∀i = 1, . . . , n, ρ est admissible}

Kassel généralise le lemme d’E. Ghys et donne un critère d’admissibilité qui permet d’obtenir le corollaire
suivant

Théorème 5 (Kassel - 2009). R(Γ)adm est un ouvert euclidien de R(Γ).

Remarque.
— De plus, le critère implique trivialement que toute représentation à image compacte est admissible. En

particulier, Hom(Γ,SU2) ⊂ R(Γ)adm.
— Cela étant, R(Γ)adm n’est presque jamais un ouvert de Zariski de R(Γ) (sauf cas b1(Γ) = 0).

1.2 Généralisation de la complétude

Si R(Γ)adm n’est pas contenu dans la composante connexe de ρ0, il faut s’assurer que les quotients sont
toujours difféomorphes.

Proposition 2. Pour tout ρ ∈ R(Γ)adm, (Mρ)
diff est C∞-difféomorphe à (SL2(C)/Γ)diff .

On compare les déformations de cette (G,X)-structure et les déformations de la structure complexe. Consi-
derons le fibré tangent à Mρ, identifié au quotient :

Γ× SL2(C)× sl2(C) −→ SL2(C)× sl2(C)

(γ, (x, v)) 7−→
(
ρ(γ)−1xγ,Adρ(γ)−1(v)

)
Déformation de la (G,X)-structure

— Contrôlées par

H1(Mρ,Fρ)

avec Fρ le faisceau des germes de sections
localement constantes.

— Obstructions dans

H2(Mρ,Fρ)

Déformation de structures complexes
— Contrôlées par

H1(Mρ,Θρ)

avec Θρ le faisceau des germes de sections
holomorphes (champs de vecteurs).

— Obstructions dans

H2(Mρ,Θρ)

Proposition 3. On a une injection Hi(Mρ,Fρ) ↪→ Hi(Mρ,Θρ), i = 0, 1, 2.

Notons hiF (ρ) := dimHi(Mρ,Fρ) et hiΘ(ρ) := dimHi(Mρ,Θρ).

Théorème 6 (Jamin - 2021). Si h1
Θ(ρ) = h1

F (ρ) alors, la famille

{Mη | η ∈ Hom(Γ,SL2(C))}

Hom(Γ,SL2(C))

pointée au morphisme ρ est complète.
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Exposé du 7 Juin 2021 2 GÉNÉRALISATION GLOBALE

Remarque. Dans un espace de Kuranishi (i.e. la une base d’une déformation complète et verselle), il n’y a
pas de répétitions au sens où il n’y a pas de sous-espace C-analytique sur lequel la restriction de la famille est
triviale.

De plus, puisque Aut0(Mρ) correspond à la composante connexe du stabilisateur de ρ(Γ) dans SL2(C), on
sait que la famille au dessus de la SL2(C)-orbite Oρ de ρ est triviale.

Corollaire. L’espace de Kuranishi de Mρ est donné par le germe analytique d’un sous-espace analytique de
R(Γ)adm localement transverses à la SL2(C)-orbite de ρ.

Idée de preuve du théorème :
Pour les obstructions supérieures, on considère une déformation de Mρ sur C et on suppose qu’à l’ordre n, la
déformation est donnée par la déformation du morphisme ρ c’est-à-dire qu’il existe des cochaines telles que la
déformation soit donnée par

ρn := ρ(c1,··· ,cn) : γ 7→ exp

(
n∑
i=1

ci(γ)ti

)
ρ(γ)

On montre ensuite que cette l’obstruction à étendre cette déformation à l’ordre n+1 est donnée par l’obstruction
à étendre la structure complexe au même ordre et on construit récursivement une déformation formelle de ρ.
Ensuite

Artin + formel =⇒ convergence

Proposition 4. Si Hom(Γ,SL2(C)) n’est pas partout non réduite, il existe un ouvert de Zariski analytique V
sur lequel h1

Θ(ρ) = h1
F (ρ).

Question 3. A-t-on h1
F = h1

Θ sur R(Γ)adm ?

2 Généralisation globale

2.1 Champ de Teichmüller

Soit X une variété différentiable compacte connexe orientable de dimension paire et supposons que X
admette une structure complexe. On considère l’espace I(X) des structures complexes sur X. Et son espace de
Teichmüller Teich(X) est définit par le quotient de I(X) par l’action de Diff0(X)

Diff(X)0 × I(X)→I(X)

(f, J) 7→(df)−1 ◦ J ◦ df

C
h

a
m

p
d

e
T

ei
ch

m
ü

ll
er

De façon analogue, on définit l’espace de modules de Riemann comme le quotient de I(X) par l’action de
Diff+(X).

De plus, pour un ouvert V ⊂ I(X) (stable par Diff(X)0), on définit de façon similaire Teich(X,V ) l’espace
de Teichmüller de X dont toutes les structures complexes sont dans V .

Question 4. Quelle structure analytique cet espace admet-il ?

On connâıt des exemples de variétés pour lesquelles cet espace topologique n’est pas Hausdorff et n’admet
donc pas de structure de variété complexe ni de structure d’espace analytique. Pour répondre à la question, il
faut considérer les champs.

Théorème 7 (Meersseman - 2018). Soit V ⊂ I(X). L’espace de Teichmüller d’une variété Teich(X,V )
admet une structure de champ (au dessus du site AnC).

De plus, si
∃a ∈ N tel que ∀J ∈ V, dim Aut(X,J) ≤ a

alors ce champ est analytique.

Le champ de Teichmüller est une catégorie dont
— les objets sont les familles π : X → B avec B ∈ AnC de fibres difféomorphes à X (l faut encore une

hypothèse sur la structure de cette famille, mais ce n’est pas essentiel pour comprendre la suite).
— les morphismes sont les diagrammes cartésiens

X ′ X

B′ B

F

entre deux familles.
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Exposé du 7 Juin 2021 3 EXEMPLE GROUPE DE NŒUD

Remarques.
— Ce théorème implique que localement cet espace est localement obtenu comme quotient d’un espace

analytique par un groupe de Lie complexe avec point fixe,
— la structure de champ contient strictement plus d’informations que l’espace topologique obtenu comme

quotient au sens où il contient aussi la donnée des groupes d’isotropie Aut1(XJ) de chaque classe de
structure complexe qui sont les biholomorphismes d’une structure complexe J qui sont isotopes à l’identité
via des C∞-difféomorphismes.
(attention, il y a des exemples de X tels que Aut0(X) ( Aut1(X) ( Aut(X))

2.2 Champ de caractères

Dans notre cas, on définit naturellement le champ des caractères admissibles comment champ quotient de
R(Γ)adm par l’action de conjugaison par SL2(C).

Remarque.
— Commençons par donner quelques détails sur le champ de caractères (admissibles). Si V ⊂ R(Γ)a stable

par SL2(C), le champ [V/ SL2(C)] est une catégorie dont
— les objets sont la donnée d’un SL2(C)-fibrés principaux P → B au dessus d’un espace analytique

B ∈ AnC et d’une application SL2(C)-équivariante ψ : P → V .
— les morphismes sont les diagrammes cartésiens

P ′ P

B′ B

F

compatible avec les applications équivariantes, c’est-à-dire tels que

V

P ′ PF

ψ′ ψ

commute.
— Ce résultat nous dit que toute famille de déformation de SL2(C)/Γ dont les structures complexes sont

biholomorphes à des Mρ s’obtiennent de cette façon.

Proposition 5.
Aut1(Mρ) ' CSL2(C)(ρ(Γ))

Théorème 8. Si R(Γ) n’est pas partout non réduite et V l’ouvert de Zariski analytique sur lequel h1
F = h1

Θ

alors
[V/ SL2(C)] est un sous-champ ouvert de Teich(SL2(C)/Γ)

3 Exemple Groupe de nœud

Avant d’aller plus loin, quelques remarques :

Remarque. Si M est une variété hyperbolique fermée, compacte, réelle de dimension 3, son groupe fondamental
π1(M) se plonge dans PSL2(C). Par un résultat de Thurston, ce groupe se relève en un sous-groupe discret
co-compact Γ dans SL2(C) et la variété SL2(C)/Γ s’identifie à un double revêtement du fibré des repères de M .

— Dans cette situation, Γ est de présentation finie,
— cela fournit des exemples,
— la cohomologie de SL2(C)/Γ est intimement liée à celle de M .
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Exposé du 7 Juin 2021 3 EXEMPLE GROUPE DE NŒUD

Nœud kMk := S3 −N(k) π1(Mk) avec b1 = 1

Mk(p, q) π1(Mk(p, q)) avec b1 = 0, 1

FMk(p, q) R(π1(Mk(p, q)))[V ⊂ R(π1(Mk(p, q)))a/SL2(C)]

Exterieur

du

nœud

Présentation

de

Wirtinger

Théorème de

de Van-Kampen

(p, q)-chirurgie

de Dehn

(p, q)-chirurgie

de Dehn

Fibré des

repères

Champ

de

Teichmüller

Variété des

représentations

Restriction

et

quotient

Rigidité

de

Mostow

Soient k le nœud en huit, V(k) voisinage régulier. On note Mk := S3 \ V(k).

Voici une présentation du groupe fondamental de Mk := S3 −N(k) :

π1(Mk) = 〈a, b | ab3ab−1a−2b−1〉

— Mk est compacte,
— mais Mk n’est pas fermée, ∂Mk ' T.
On va recoller un tore plein sur le bord de Mk. Soient (p, q) ∈ Z2 et

φ : ∂(S1 × D)→ ∂ (Mk)

tel que φ(S1 × {1}) soit une courbe de pente p/q sur T ' ∂Mk. La (p, q)-chirurgie de Dehn sur Mk est

Mk(p, q) :=
(
S1 × D

)⊔
φ

Mk.

Théorème 9 (Théorème 4.7 [?]). La variété Mk(p, q) est hyperbolique pour tout couple (p, q) ∈ N2 différents
de (1, 0), (0, 1), (1, 1), (2, 1), (3, 1) ou (4, 1).

Soit n un entier. On peut facilement trouver une présentation du groupe π1(M41
(n, 1)) :

Γ(n) :=π1(M41
(n, 1))

=〈a, b | aba−1bab−1a−1ba−1b−1, an−1b−1aba−1bab−1〉

Par le résultat précédent, il existe ιn : Γ(n) ↪→ SL2(C) discrète.
De plus,

(π1(M41(n, 1)))
ab

= 〈a, b | b, an〉 ' Z/nZ

donc toute représentation abélienne de Γ(n) est conjuguée à

ρm(a) = ρm(b) =

(
e2iπm/n 0

0 e−2iπm/n

)
, m = 1, . . . , n

et est admissible (par compacité). On note M(n)
ρm la variété quotient de SL2(C) par

Γ(n)× SL2(C)→ SL2(C), (γ, x) 7→ ρm(γ)−1xιn(γ)
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Proposition 6.
h1
F (ρm) = h1

Θ(ρm) = 0

En particulier,
Kur(M(n)

ρm ) = {pt}

Corollaire. On a
#π0

(∣∣∣Teich(M(n)
ρ0 )
∣∣∣) ≥ ⌊n

2

⌋
.
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