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Chapter 1

Introduction to GIT

Geometric invariant theory arises in an attempt to construct a quotient of an algebraic variety X
by an algebraic action of a linear algebraic group G. In many applications X is the parametrizing
space of certain geometric objects (algebraic curves, vector bundles, etc.) and the equivalence
relation on the objects is defined by a group action. The main problem here is that the quotient
space X{G may not exist as an algebraic variety. The main reason to this fact is that the orbits
may be non closed.

The main idea is to restrict this action to a Zariski open subset U Ă X such that the quotient
U Ñ U{G exists as quasi-projective algebraic variety and U is maximal in some sense. This
bring us to the question : how do we choose this U ?

The three main references for these lectures are, obviously the "bible of GIT" : Geometric
invariant theory by Mumford [1], the Dolgachev’s book : Lecture on invariant theory and also
Newstead [2] an introduction to moduli problems and orbit spaces.
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1.1 Actions

Definition. An (left) action of an algebraic group G on a variety X is a morphism :

σ : GˆX Ñ X

such that

• σpg, σpg1, xqq “ σpgg1, xq,

• σpe, xq “ x.

We said that pX, σq is a G-variety.

We drop the σ and write just g.x for σpg, xq.
We will denote by Ox (resp. Stx) the orbit (resp. the stabilizer) of x under the action of G.

Definition. A G-morphism φ between two varieties X and Y is a G-equivariant morphism and
it is G-invariant if it is constant on orbits.

Definition. Let G be an algebraic group. A rational representation of G is a morphism G Ñ

GLnpkq and the corresponding action on kn is called a linear action of G on kn.

Note that, given a G-variety X , we can define an automorphism of the k-algebra OpXq by
sending f : x ÞÑ fpxq to g˚f : x ÞÑ fpg.xq. And we have :

Lemma 1. Let X be a G-variety and W a finite-dimensional subspace of OpXq. Then

• if W is invariant then the action of G on W is given by a rationnal representation,

• in any case, W is contained in an invariant finite-dimensional subspace.

Proof. Let f1, ¨ ¨ ¨ , fn be a basis of W then

g˚fi “
n
ÿ

j“1

ρijpgqfj, ρijpgq P k

and g ÞÑ ρijpgq give a rationnal representation.
For the second statement, we just need to check that Spanpg˚f1, ¨ ¨ ¨ , g

˚fnq for all g P G is
finite-dimensional (see [2]).

1.2 Categorical and geometric quotients

Definition. Let pX, σq be aG-variety. A categorical quotient ofX byG is a pair pY, φq where Y
is a variety and φ : X Ñ Y is a G-invariant morphism such that any other G-invariant morphism
f : X Ñ Z there exists a unique morphism ψ : Y Ñ Z such that f “ ψ ˝ φ.

Moreover, if φ´1pyq consists of a single orbit for all y P Y , we call pY, φq an orbit space.

5



Proposition 1. A categorical quotient is determined up to isomorphism.

Example. Let GLnpkq act on Mnpkq by conjugation. The pair pkn, χq with χ : Mnpkq Ñ kn

given by the characteristic polynomial is a categorical quotient.
Let prove it for n “ 2, k “ C. Let

f : M2pCq Ñ Z

be a GL2pCq-invariant morphism. As it is constant along orbits, one can consider the Jordan
form to distinguish orbits. We obtain three types of matrices

˜

α 0

0 β

¸ ˜

α 0

0 α

¸ ˜

α 1

0 α

¸

which are not similar. But the matrices
˜

α 1

0 α

¸ ˜

α 0

0 α

¸

have same characteristic polynomial. If we consider

Bt :“

˜

t 0

0 t´1

¸˜

α 1

0 α

¸˜

t´1 0

0 t

¸

“

˜

α t2

0 α

¸

we get that fpBtq “ fpB1q for all t ‰ 0 and hence also for t “ 0.
One can consider the morphism p : C2 Q v Ñ Cv P M2pCq which associate to a vector v the

compagnion matrix associated so that we can form the map

ψ : C2
Ñ Z, v ÞÑ fpCvq

which is morphism.

Remark. • Note that pkn, χq is not an orbit space.

In fact, for χpIdq “ p´2, 1q and χ´1pp´2, 1qq “ OIdYOI where I “

˜

1 1

0 1

¸

• This construction of a 1-parameter subgroup Gm Ñ GL2pCq acts on the G-variety is the
main idea of stability of Mumford, we will generalize this condition later.

Definition. Let pX, σq be a G-variety. A good quotient of X by G is a pair pY, φq where Y is a
variety and φ : X Ñ Y is an affine G-invariant surjective morphism such that

• if U is open in Y , then
φ˚OpUq Ñ Opφ´1pUqq

is an isomorphism onto Opφ´1pUqqG

• if W is closed, then φpW q is closed,
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• If W1, W2 are closed disjoint subset of X then φpW1q X φpW2q “ H.

Moreover, if pY, φq is an orbit space, then we call it a geometric quotient.

Remark. The concepts of good (resp. geometric) quotient pY, φq are local with respect to Y in
the sense that

• if U is open in Y then pU, φq is a good (resp. geometric) quotient for φ´1pUq,

• if tUiu is an open covering of Y such that pUi, φq is a good (resp. geometric) quotient of
φ´1pUiq then pY, φq is a good (resp. geometric) quotient of X .

Proposition 2. A good quotient is a categorical quotient.

Example. For M2pCq the GL2pCq-variety, the categorical quotient is not a good quotient since
det is not closed.

1.3 Affine quotients

We start by look at the case where X is affine.

Given an affine G-variety X we can expect that there exists a categorical quotient pY, φq with
Y affine. Notice that for a categorical quotient pY, φq, any G-invariant morphism f : X Ñ k

factors through φ. In algebraic terms this means that

φ˚ : OpY q Ñ OpXq

is an isomorphism onto the G-invariant OpXqG. Hence, Y is affine if, and only if, OpXqG is
finitely generated.

This is a version of Hilbert’s fourteenth problem and Nagata gave a counterexample and a
sufficient condition on G. To state this theorem, we need two definitions.

Definition. An algebraic group G is geometrically reductive if given a finite-dimensional ra-
tionnal representation V of G and an invariant vector v P V there exists an G-invariant homoge-
neous polynomial function f : V Ñ k such that fpvq “ 1.

Proposition 3. Assume charpkq “ 0.

• Every finite group is geometrically reductive,

• SLnpkq, GLnpkq are geometrically reductive.

Definition. Let G be an algebraic group and R be a k-algebra. A rationnal action of G on R is
a map R ˆGÑ R such that

• pgg1q.f “ g1.pg.fq and e.f “ f ,
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• f Ñ g.f is a k-algebra automorphism of R,

• every element of R is contained in a finite-dimensional G-invariant subspace on which G
act by rationnal representation.

Theorem 1. (Nagata) Let G be a geometrically reductive group acting rationnally on a finitely

generated k-algebra then RG is also finitely generated.

The proof is too long we won’t do it here, see [2] for example.

Remark. In characteristic 0, the usual notion of reductive group (with trivial unipotent radical)
is equivalent to geometrically reductivity, hence we drop the term geometrically.

Theorem 2. Let X be an affine G-variety with G reductive. There exists a good quotient pY, φq

with Y affine.

By Nagata theorem, we know that OpXqG is finitely generated so that SpmpOpXqGq is an
affine variety, we take Y as this variety.

We need :

Lemma 2. Let X be a G-variety with G reductive and Zi, Z2 closed subsets of X , then there

exists f P OpXqG such that fpZ1q “ 0 and fpZ2q “ 1.

Proof. Since Z1 and Z2 are disjoint closed subset, the sum of the ideals defining Z1 and Z2 is
the whole ring OpXq, hence one can find α P IpZ1q and β P IpZ2q such that 1 “ α ` β. If we
consider α we have the propertie αpZ1q “ 0 and αpZ2q “ 1. By lemma 1 (that said that for an
invariant closed subset W , the action of G restricted to W is given by a rationnal representation),
we know that the subspace W Ă OpXq spanned by g˚α, g P G is finite dimensional. Let
φ1, ¨ ¨ ¨ , φn be a basis of W and consider the map : X Ñ An defined by these functions.
Then fpZ1q “ p0, ¨ ¨ ¨ , 0q and fpZ2q “ p1, ¨ ¨ ¨ , 1q. G acts by a rationnal representation of
An. By definition of geometrically reductive group, we can find a G-invariant homogeneous
polynomial F P krX1, ¨ ¨ ¨ , Xns such that F p1, ¨ ¨ ¨ , 1q ‰ 0 then f˚F “ F pφ1, ¨ ¨ ¨ , φnq satisfies
the assertion.

We start the proof of the theorem.

Proof. Suppose φ is not G-invariant then there exists g P G and x P X such that φpg.xq ‰ φpxq.
Since Y is affine, there exists f P OpY q such that fpφpg.xqq ‰ fpφpxqq which contradicts that
φ˚f P OpXqG.

We now prove the first condition. Since localisation commutes to taking invariant, one can
take Yf for some f P OpXqG as a basis of open sets and we get pOpXqGqf “ pOpXqf qG.

For the last condition, by the previous lemma, we take f P OpXqG such that fpW1q “ 0 and
fpW2q “ 1. Thus by the previous point, seeing f in OpY q, fpφpW1qq “ 0 and fpφpW2qq “ 1

hence φpW1qq X φpW2qq “ H.
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The second point, consider W closed in X and y P φpW q ´ φpW q. We apply the previous
point to W1 “ W and W2 “ φ´1pyq and get a contradiction.

Proposition 4. Let X be a G-variety and pY, φq be a good quotient. Then

• φpx1q “ φpx2q ô Ox1 XOx2 ‰ H,

• if the G-action on X is closed, i.e. all the orbits are closed, then pY, φq is a geometric

quotient.

Definition. Let X be an affine G-variety. A point x P X is called stable if its orbit is closed and
of the same dimension of G, We denote by Xs the set of stable points of X .

Proposition 5. Let X be an affine G-variety and pY, φq a good quotient then there exists Y 1 a

subset of Y such that φ´1pY 1q “ Xs and pY 1, φq is an orbit space for Xs.

Proof. First, a remark : dim Ox “ dimG ´ dim Stx and x Ñ dim Stx is an upper semi-
continuous fonction of x. So that Xmax :“ tx P X| dimOx ě nu is an open set.

Consider Y 1 “ Y ´ φpX ´Xmaxq which is open by the previous remark and the theorem 2

(pY, φq is a good quotient and if Z is closed then φpZq is too).
We will show that φ´1pY 1q “ Xs. Let x P X 1, then the set Ox and X ´Xmax are disjoint closed
subset of X so that φpxq is in Y 1, thus we have X 1 Ă φ´1pY 1q. For the other inclusion, let x R X 1

then either x P X ´Xmax or Ox is open. If x P X ´Xmax then φpxq R Y 1. If Ox is open, let
y P Ox ´ Ox then dim Oy ă Ox by the remark hence y R Xmax and φpyq “ φpxq R Y 1. We
conclude that in both cases, x R φ´1pY 1q.

By definition ofX 1, the action ofG restricted toX 1 is closed and pY 1, φq is an orbit space.

1.4 Projective quotients

The results in affine case does not apply in the projective one. One way to construct a quotient
for a group action on a projective variety is to consider open G-invariant affine covering of X
and glue the quotients together. But in general it is not possible to cover X in this way.

However, it is necessary to consider affine open subsets of X of the form Xf for f an
homogeneous polynomial in krX0, ¨ ¨ ¨ , Xns and look for the G-invariants but G does not
determine an action on this polynomial ring. This leads to this definition :

Definition. A linearisation of an action of an algebraic group G on a projective variety X in Pn

is a linear action of G on kn`1 which induces the action of G on X . A linear action is an action
with a linearisation of it.

Remark. • The definition in then justify by the fact that a linear action ofG onX determined
a G-action on the polynomial ring krX0, ¨ ¨ ¨ , Xns.
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• A problem that we have with this definition is that given a projective G-variety X , a
linearisation of the action depends obviously of the action of G but also on the embedding
of X in Pn.

We will first keep this definition even if it depends on an embedding. In a second part, we
will introduce a more general notion of linearisation to avoid this issue.

Definition. Let X be a projective G-variety in Pn with a linearisation of the action of G. A point
x P X is called

• semi-stable if there exists an invariant homogeneous polynomial f of degree at least 1 such
that fpxq ‰ 0,

• stable if dim Ox “ dimG and there exists an invariant homogeneous polynomial f of
degree 1 such that fpxq ‰ 0 and the action of G on Xf is closed.

Remark. The definition of stable correspond of Mumford’s definition of properly stable.

We denote by Xss (resp. Xs) the set of semi-stable (resp. stable) points of X .

Lemma 3. Both sets Xss and Xs are open in X .

Theorem 3. Let X be a projective variety in Pn. Then for any linear action of a reductive group

G on X

• there exists a good quotient pY, φq of Xss by G and Y is projective,

• there exists an open subset Y s of Y such that φ´1pY sq “ Xs and pY, φq is a geometric

quotient of Xs,

• for all x1, x2 P Xss,

φpx1q “ φpx2q ô Ox1 XOx2 XX
ss
‰ H

• for x semi-stable point,

x P Xs
ô dim Ox “ dimG, and Ox is closed in Xss

Remark. With the Mumford’s definition of stability, we must replace dim Ox “ dimG, by
dim Ox is contant in a neighbourhood of x.

We won’t prove this theorem, instead we want a definition that takes in count the dependance
of the embedding of X in Pn. Before to go in this way, we show an example.
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Example. Consider the following action of Gm on X :“ Pn given by

σ : Gm ˆ Pn Ñ Pn pt, rx0 : ¨ ¨ ¨ : xnsq ÞÑ rt´1x0 : tx1 : ¨ ¨ ¨ : txns

Obviously, the function x0xi for all i ‰ 0 are invariants and we claim that these functions
generate the ring of invariants.

Let f P krx0, ¨ ¨ ¨ , xns, that is

f “
ÿ

m

apmqxm0
0 ¨ ¨ ¨ xmn

n

where m “ pm0, ¨ ¨ ¨ ,mnq. We have

t.f “
ÿ

m

apmqtm1`¨¨¨`mn´m0xm0
0 ¨ ¨ ¨ xmn

n

hence f in Gm-invariant if, and only if, apmq vanish for all m such that m0 ‰
řn
i“1mi. And,

when f is Gm-invariant, we can write

f “
ÿ

m

apmqxm0
0 ¨ ¨ ¨ xmn

n “
ÿ

m

apmqpx0x1q
m1 ¨ ¨ ¨ px0xnq

mn

Which implies that krx0, ¨ ¨ ¨ , xnsGm » krx0x1, ¨ ¨ ¨ , x0xns » kry0, ¨ ¨ ¨ , yn´1s taking the spec-
trum, we get X{{Gm “ Pn´1.

The ideal of invariant homogeneous polynomials of degree at least 1 is generated by
px0x1, ¨ ¨ ¨ , x0xnq and the associated variety ifN “ trx0 : ¨ ¨ ¨ : xns|x0 “ 0 or px1, ¨ ¨ ¨ , xnq “ 0u.
Thus, the locus of the semi-stable points isXss “ trx0 : ¨ ¨ ¨ : xns|x0 ‰ 0 or px1, ¨ ¨ ¨ , xnq ‰ 0u »

An ´ t0u. Moreover, every semi-stable point is stable as all orbits are closed in An ´ t0u and
have zero dimensional stabilisers. We conclude that Xss “ Xs “ An´t0u Ñ X{{Gm is a good
quotient and since the preimage is a unique orbit, it is also an orbit space.

1.4.1 Linearisation of actions

A regular map from a projective variety X to Pn is equivalent to the data of a line bundle L and
a set of its sections :
Let X be a variety, and let L be a line bundle on X . We say L is base-point-free if for every
point x P X , there is a global section of L which doesn’t vanish. If this is true, then L determines
a map to a projective space in the following way. The global sections of L are finite dimensional,
so choose a basis psiq. Then send a point x P X to

rs1pxq : s2pxq : ... : snpxqs

This leads us to the following definition :

Definition. Let X be a G-variety and p : L Ñ X a line bundle on X . A linearisation of the
action of G with respect to L is an action of G on L such that :
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• for all y P L, g P G,

ppgyq “ g.ppyq

• The map

Lx Ñ Lg.x y ÞÑ gy

is linear

Note that a linear action on L induces a linear action on Lbr and for any invariant section f
of Lbr, Xf is open and invariant.

Lemma 4. Let L be a line bundle over X . Then the two assertions

• @x P X, Df a section of Lr (for some r P N˚) such that fpxq ‰ 0 and Xf is affine,

• there exists a morphism ψ : X Ñ Pn auch that ψ maps isomorphically onto a quasi-

projective variety in Pn ans ψ˚H » Lr for some r. Where H is a hyperplan bundle.

are equivalent.

In this case, we called L ample.

We then define the notion of semi-stability and stability as in the previous case.

Definition. Let X be a projective G-variety with a line bundle L and a linearisation of G with
respect to L. A point x P X is called

• semi-stable if, for some r P N˚, there exists an invariant section f of Lr such that fpxq ‰ 0

and Xf “ tx P X| fpxq ‰ 0u is affine,

• stable if it is semi-stable and dim Ox “ dimG and the action of G on Xf is closed (for
the f in the definition of semi-syability).

As before, we denote by XsspLq and XspLq respectively the set of semi-stable points and
stable points.

Proposition 6. Let X a projective G-variety in Pn and let L the line bundle obtained by

restriction over X of the hyperplan bundle. Then any linear action on X induces a L-linear

action and both definitions agrees :

Xss
pLq “ Xss, Xs

pLq “ Xs

In some cases, given an action of a reductive group G on a projective variety X and a line
bundle L, a linearisation of G with respect to L is unique.

Proposition 7. Let L be a line bundle over X . Then an action of SLnpkq on X has at most one

linearisation with respect to L.
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We have the following theorem, which generalize theorem 4.

Theorem 4. Let X be a variety and L a line bundle over X . Then for any L-linear action of a

reductive group G on X

• there exists a good quotient pY, φq of XsspLq by G and Y is quasi-projective,

• there exists an open subset Y s of Y such that φ´1pY sq “ XspLq and pY, φq is a geometric

quotient of XspLq,

• for all x1, x2 P XsspLq,

φpx1q “ φpx2q ô Ox1 XOx2 XX
ss
‰ H

• for x semi-stable point,

x P Xs
pLq ô dim Ox “ dimG, and Ox is closed in Xss

pLq

Remark. The only differences between this theorem and theorem 4 are just that Y need not to
be projective and that here we take in count the dependance on L.

1.4.2 More materials on linearisation (if we have time)

The definition of linearisation of an action σ of G on X can be reformulate by asking the diagram

Gˆ L L

GˆX X

σ

idˆπ π

σ

to be commutative and the zero section to be G-invariant.

We saw in the definition of linearisation of action σ with respect of a line bundle that the
induced map on the fibers Lx Ñ Lg.x is a linear isomorphism. Hence, we can also view the set
of isomorphisms as an isomorphisms of the line bundle σpgq : LÑ g˚L and the conditions of
action are translated to the following 1-cocycle condition

σpgg1q “ σpg1q ˝ g1˚σpgq : LÑ g˚LÑ g1˚pg˚Lq “ pgg1q˚L

The collection of isomorphisms σ can be viewed as an isomorphism Φ : pr˚2 pLq Ñ σ˚L,
where pr2 : GˆX Ñ X is the natural projection. Moreover, we have

Lemma 5. Let G be a connected affine algebraic group and X an algebraic G-variety. A line

bundle L admits a G-linearisation if, and only if, there exists an isomorphism of line bundles

Φ : pr˚2 pLq Ñ σ˚L.
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Given two line bundle L and L1 together with Φ : pr˚2 pLq Ñ σ˚L and Φ1 : pr˚2 pL
1q Ñ σ˚L1,

one can construct their tensor product as the line bundle Lb L1 with the G-linearisation

Φb Φ1 : pr˚2 pLb L
1
q “ pr˚2 pLq b pr

˚
2 pL

1
q Ñ σ˚pLb L1q “ σ˚pLq b σ˚pL1q

The zero element is the trivial line bundle X ˆ A1 with the trivial linearisation

σ ˆ id : GˆX ˆ A1
Ñ GˆX

and the inverse of pL,Φq is pL´1,t Φ´1q. We denote by PicGpXq the abelian group defined by
the set of line bundles L with isomorphisms Φ : pr˚2 pLq Ñ σ˚L. We get a morphism

α : PicGpXq Ñ PicpXq

by forgetting the linearisation.
We obtain an exact sequence

0 Ñ HompG, k˚q Ñ PicGpXq Ñ PicpXqG Ñ H2
pG, k˚q

Proposition 8. (Recall) Let L be a line bundle over X . Then an action of SLnpkq on X has at

most one linearisation with respect to L.

1.5 Criterion of stability

In this section, we will give a numerical criterion to stability due to Mumford. The main idea is
to restrict the action of G to 1-parameter subgroups of G and work with this action.

Proposition 9. Let X a G-variety and L a linearised line bundle. For a point x P X , we denote

by x̂ a point in kn`1 lying over x. Then x is semi-stable if, and only if, 0 R Ox̂.

Proof. If x is semi-stable then there exists f an invariant homogeneous polynomial of degree
at least 1 such that fpxq ‰ 0. Clearly fpx̂q ‰ 0 and fpyq is equal to a non-zero constant for all
y P Opx̂q hence 0 R Ox̂.

Conversely, if 0 R Ox̂ then by a previous lemma, one can find an invariant homogeneous
polynomial such that fp0q “ 0 and fpyq “ 1 for all y P Opx̂q. But f has constant term equal 0

so, there exists some homogeneous part of f of degree at least 1 such that it is not 0 at x̂.

Hence, one can detect some unstable points by checking if 0 P H.x̂ for some subgroup H
os G. If we consider H to be the image of a 1-parameter subgroup λ : Gm Ñ G one has, in
appropriate coordinates

λptq.x̂ “ ptm0x0, ¨ ¨ ¨ , t
mnxnq

Suppose that all mi for which xi ‰ 0 are stricly positive. Then the map

λx̂ : A1
´ t0u Ñ An`1, tÑ λptq.x̂

can be extended to A1 by sending the zero to the origin of An`1. In this case, this is clear that
0 P Ox̂ and x is unstable.
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Remark. More precisely, since we consider the case where X is projective, the map

λx : A1
´ t0u Ñ X, t ÞÑ λptq.x

can be extended to λx : P1 Ñ X and we set limtÑ0 λptq.x :“ λxp0q and in the same way for8.

If all mi for which xi ‰ 0 are strictly negative then by λ´1ptq :“ λpt´1q we reach to the
same conclusion.

If we set
µpx, λq :“ mini tmi|xi ‰ 0u

then we can reformulate this remark by saying that x is unstable if there exists a 1-parameter
subgroup λ : Gm Ñ G such that µpx, λq ą 0. Hence, we get

if x is semi-stable then µpx, λq ď 0, @λ : Gm Ñ G

Assume now that µpx, λq “ 0 for some λ and x is stable. Let y “ py0, y1, ¨ ¨ ¨ , ynq, where
yi “ xi if mi “ 0 and xi ‰ 0 and yj “ 0 otherwise. Then, by taking the limit when t tends to
0, we see that y P Ox. If x was a stable point, then its orbit is closed and y is in Ox but y is
fixe by λpGmq so it is not stable. This contradict the fact that x is stable. Hence, we get another
characterization

if x is table then µpx, λq ă 0 @λ : Gm Ñ G

And actually, the following theorem says that the converse is true.

Theorem 5. Let G be a reductive group acting on a projective algebraic variety X and L be an

ample G-linearised line bundle over X . Then a point x P X is

• stable if, and only, if µpx, λq ă 0, @λ : Gm Ñ G,

• semi-stable if, and only, if µpx, λq ď 0, @λ : Gm Ñ G,

Proposition 10. Let SLnpCq act linearly on a projective variety X . A point x is stable (resp.

semi-stable) if and only if, µpg.x, λq ă 0 (resp. ď) for every g P SLnpCq and every 1-par.

subgroup λ.

Example. Consider the moduli problem given by plane cubics curve in CP2 up to the action of
GL3pCq “ C˚ ˆ SL3pCq.

A plane cubic is defined by a non zero polynomial up to scalar multiplication.

f “ a3,0X
3
1 ` a2,1X

2
1X2 ` a1,2X1X

2
2 ` a0,3X

3
2`

a2,0X0X
2
1X2 ` a1,1X0X1X2 ` a0,2X0X

2
2`

a1,0X
2
0X1 ` a0,1X

2
0X2 ` a0,0X

3
0

i.e. f “
ÿ

i`jď3

ai,jX
3´i´j
0 Xr1

1 X
r2
2

To avoid a complete lecture, we take a characterization on the coefficients to get singularities
and up to the action of SL3pCq we can look at singularities at p1, 0, 0q.
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• p1, 0, 0q is an ordinary double point if, and only if,

a0,0 “ a1,0 “ a0,1 “ 0

• p1, 0, 0q is a non ordinary double point if, and only if,

a0,0 “ a1,0 “ a0,1 “ 0 and a2,0a0,2 “
1

4
a21,1

• p1, 0, 0q is a triple point if, and only if,

a0,0 “ a1,0 “ a0,1 “ a2,0 “ a1,1 “ a0,2 “ 0

Proposition 11. The set of stable cubics correspond to non-singular one. The set of semi-stable

cubics are the singular one without non ordinary double point or triple point.

Proof. We the previous proposition, we can only look at µpf, λq for a particular λ to characterize
non-semi-stability or non-stability. For example, one can take

λ : tÑ diagptr0 , tr1 , tr2q

where
ř

ri “ 0 with r0 ď r1 ď r2. And for such λ,

λptq.fpX0, X1, X2q “ fptr0X0, t
r1X1, t

r2X2q “

3
ÿ

i,j“0

tp3´i´iqr0`ir1`jr2ai,jX
3´i´j
0 Xr1

1 X
r2
2

and

µpf, λq “ mini`jď3 tp3´ i´ jqr0 ` r1i` r2j| aij ‰ 0u

Denote by Ei,j :“ p3´ i´ jqr0 ` r1i` r2j. By assumption on the ri, we have that

E0,0 ď E1,0 ď E0,1 ď E2,0 ď E1,1 “ 0

We know decompose into 2 parts corresponding to unstability and semi-stability.

• We see that µpf, λq ą 0 (equivalent to f is unstable) implies that E0,0 ď E1,0 ď E0,1 ď

E2,0 ď E1,1 “ 0 and does not appears in the minimum and hence the corresponding ai,j
vanish. Conversely, if f satisfies

a0,0 “ a1,0 “ a0,1 “ a1,1 “ a2,0 “ 0

we can take r0 “ ´3, r1 “ 1 and r2 “ 2 and check that µpf, λq ą 0. Thus, if f has a
triple or f has a double point with a unique tangent, it is unstable. (for the case where
a0,2 “ 0, we take r0 ď r2 ď r1 to conclude for f has a non ordinary double point then it is
unstable).
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• If f has an ordinary double point (always assume to be at p1, 0, 0q), then we can check that
µpf, λq “ r0`2r1 ď r0` r1` r2 “ 0 (because either a1,1 or a2,0 are not 0) by assumption
on ri. Moreover for suitable ri one can have µpf, λq “ 0 for a0,0 “ a1,0 “ a0,1 “ 0. So a
singular cubic with ordinary double point is semi-stable.

Finally, for f non-singular we have µpf, λq ď 3r0 ă 0 and r0 have to be negative by
assumptions so that f is stable. For the final part of this proof, see [2].
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