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RESUME

EPUIS LES TRAVAUX DE M. KURANISHI & la fin des années 1950, la théorie des déformations de
D structures complexes, sur les variétés complexes compactes, a été largement développée. Jusqu’a
récemment, I’étude de ces déformations était surtout locale, infinitésimale, sauf dans certains cas en basse
dimension. Les travaux de TEICHMULLER ont, par exemple, permis de montrer que I’espace de Teichmiiller
d’une surface S, c’est-a-dire I’espace des classes d’équivalence de structures complexes sur S isotopes (via
un C®-difféomorphisme) a 'identité, admet une structure de variété complexe. Par ailleurs, nous savons
qu’en général, I’espace de Teichmiiller d’une variété compacte orientée n’admet pas de structure de variété
ni méme de structure d’espace C-analytique. Ce phénomeéne est dii, en grande partie, a 'existence de
saut de la dimension des groupes d’isotropie. Ce n’est qu’en 2019 que L. MEERSSEMAN a donné dans
[74], une structure de champ analytique (en explicitant un atlas de ce champ) & 'espace de Teichmiiller
d’une variété complexe compacte sous une hypothése relativement souple (précisément, il faut que les
dimensions des groupes d’automorphismes C*-difféomorphes a l'identité soient bornées).

Parallélement, les travaux [31] d’E. GHYS, ont permis d’établir que 1’espace de Kuranishi des variétés
de la forme SLo(C)/T', ou I' est un groupe discret co-compact agissant librement et de fagon totalement
discontinue, est donné par le germe analytique de la variété de représentation Hom(T', SLo(C)) pointée
au morphisme trivial pg : I' — Id € SLy(C). 1l est montré dans cet article que les déformations de I’holo-
nomie de la (SLy(C) x SLy(C), SLy(C))-structure naturelle de SLy(C)/T, via la variété de représentation,
donnent lieu & de nouvelles structures complexes et que la famille correspondante est compléte, c’est-a-
dire que toute déformation de la structure complexe de SLo(C)/T" suffisamment petite est donnée par la
déformation de cette holonomie. De plus, SLy(C) agit par conjugaison sur cette variété de représentations
en préservant les structures complexes.

Une question a laquelle répond cette these est de savoir s’il est possible, par ce procédé, de construire
lespace de Teichmiiller, ou au moins un ouvert de celui-ci, des variétés SLy(C)/T". Nous montrons qu’ef-
fectivement, la famille tautologique au dessus de la variété de représentation est toujours compléte sur
un ouvert de Zariski (analytique) de celle-ci et que le quotient champétre de cet ouvert par laction de
conjugaison par SLy(C), que l'on appellera champ de caractéres admissibles, est bien un ouvert du champ
de Teichmiiller.

Notons qu’une variété SLy(C)/T" est naturellement identifiée au fibré des repéres de la variété hyper-

bolique H? /T, ce qui justifie pleinement le nom donné & cette these.
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Contributions

Fixons T un sous-groupe discret co-compact et sans torsion dans SLo(C) ainsi que 1, ,7, des
générateurs et Ry, - - , Ry, des relations. Notons R(I") le sous-schéma de SLo(C)™ défini par les équations
induites par R; =1d, i = 1,--- ,m. Un point de ce schéma correspond a une représentation p de I' dans

SLa(C) et celle-ci permet de définir une action de I' sur SLy(C) via
I x SLy(C) — SL2(C),  (v,2) = p(v) &y

Remarquons que si p = pg ou pg : I' — Id est la représentation triviale, on retrouve ’espace homogene

SL,(C),T.

Définition. Lorsque cette action est libre et totalement discontinue, nous dirons que p est admissible et

noterons M, la variété complexe compacte obtenue comme quotient de SLo(C) par cette action.

Remarquons que SLo(C) agit par conjugaison sur R(T") en préservant (& biholomorphisme pres) les

structures complexes induites. Avec ces notations, le théoreme d’E. GHYS s’énonce de la facon suivante
Théoréme ([31, Théoréeme Al). La famille tautologique au dessus de (R(T'), po) est compléte et verselle.

Notons R(I')® le sous-ensemble de R(T") correspondant aux représentations admissibles. Nous savons,
par des travaux de F. GUERITAUD, O. GUICHARD, F. KASSEL et A. WIENHARD [41, Corollary 1.18.] que
R(I")* est un sous-schéma ouvert de R(I"). Nous montrons dans cette these, la généralisation du théoréme

1 suivante :

Théoréme (théoreme 6.0.1). Si R(I')® n'est pas partout non-réduite, alors il existe un ouvert de Zariski

(analytique) V < R(T)* pour lequel la famille tautologique au dessus de V' est compléte en tous points.

La non-trivialité des SLy(C)-orbites des représentations non centrales (c’est-a-dire & image contenue
dans le centre dans SL2(C)) met en défaut le critere de versalité de cette famille. Celui-ci peut étre

retrouvé en considérant une tranche localement transverse aux SLy(C)-orbites :

Corollaire (théoreme 6.4.1). Soit p € R(T')%. Alors, tout espace C-analytique Z contenant p et localement

transverse aux SLo(C)-orbites définit (en tant que germe, pointé en p) lespace de Kuranishi de M,.

De plus, il est possible dans certains cas de donner une expression explicite des espaces de Kuranishi
des variétés M,,.
Nous donnons par ailleurs, le groupe des automorphismes C*-difféomorphes & 'identité (correspon-

dant au groupe d’isotropie d’un point dans le champ de Teichmiiller) :

Proposition (théoreme 5.4.5). Pour p eV, le groupe Aut’ (My)n Dz’ﬁo(./\/lp) est isomorphe au centra-
lisateur de p(I") dans SLa(C).

Ce qui nous ameénera a la généralisation suivante :

Théoréme (théoreme 7.1.4). Le champ de caractéres admissibles [V /SLa(C)] est un sous-champ ouvert
du champ de Teichmiiller de SLo(C)/T.
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Finalement, par le théoréme de rigidité de Mostow, nous avons de fagon analogue :

Théoréme (théoréme 7.1.6). Le champ quotient [V / ((SL2(C) x Aut(T"))/T)] est un sous-champ ouvert
du champ de modules de Riemann de SL2(C)/T.
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NOTATIONS

Groupes et algebres de Lie

SL,(K) le groupe des matrices n x n a coefficients dans K déterminant 1

SO, (K) le groupe des matrices orthogonales n x n & coefficients dans K déterminant 1 (char(K) # 2)
SU(n) le groupe des matrices unitaires n x n a coeflicients complexes de déterminant 1

PG out G est un groupe de Lie est le quotient de G par son centre Z(G)

Spin(n) le groupe Spinoriel, revétement universel de SO,,(R)

sl5(C) lalgebre de Lie de SLy(C)

Notations générales

tg(X) conjugaison de X par g
L, (resp. Ry) la multiplication & gauche (resp. a droite) par g
Ste(H) stabilisateur de H dans G
O(H) G-orbite de H, notée simplement O(H) lorsqu’il n’y a pas d’ambiguités
Aut(M) groupe d’automorphismes complexes de M
AutO(M ) composante connexe du groupe d’automorphismes (complexes) de M
r sera généralement un sous-groupe discret de SLa(C)
R(T) schéma des représentations de I dans SLy(C)
H™ I’espace hyperbolique de dimension n
Catégories

Anc  la catégorie/le site des espaces C-analytiques de dimension finie
Sch  la catégorie/le site des schémas

Top  la catégorie/le site des espaces topologiques






INTRODUCTION

1 Apercu historique

I « LA MATHEMATIQUE EST L’ART DE DONNER LE MEME NOM A DES CHOSES DIFFERENTES »,la no-
S tion de probléme de modules est certainement celle qui illustre le mieux le propos de Henri POINCARE,
auteur de cette citation. L’origine des probléemes de modules remonte & RIEMANN, essayant de trouver
le nombre de parametres de 'espace des classes d’équivalences de variétés complexes compactes de di-
mension 1 et de genre g. L’étude de cet espace complexe M, & été largement intensifiée notamment par
TEICHMULLER et plus récemment par GROTHENDIECK, DELIGNE ou encore MUMFORD dans un langage
catégorique.

En géométrie analytique, un des problemes de modules est celui qui consiste a trouver une structure
analytique naturelle (en un certain sens, a préciser selon le contexte) sur I’espace des classes d’équivalences
de structures complexes qu’une variété différentiable compacte (supposée orientable et de dimension paire)
admette.

Les premiers travaux allant dans ce sens, sont ceux de TEICHMULLER (bien plus louables que ses
convictions politiques) qui ont permis de donner une structure & lespace des parameétres des classes
d’équivalences (a diffomorphismes isotope & 'identité prés) de structures complexes sur une variété com-
plexe ¥ de dimension 1 et de genre g > 2. Plus précisement, un théoréme di & TEICHMULLER, AHLFORS,
BERS, FRICKE et GOLDMAN affirme que 'espace de Teichmiiller de ¥ noté 7(X) admet une structure
de variété kahlerienne de dimension 6g — 6. De plus, le groupe des difféotopies de X agit proprement et
de fagon totalement discontinue en préservant la structure kdhlerienne qui descend donc au quotient :
'espace de modules de Riemann M (X). Notons que le célébre théoréme d’uniformisation de POINCARE
donne une correspondance entre cet espace de Teichmiiller 7 (X) et 'espace des structures hyperboliques &
isotopie pres. Puisque qu’une telle classe de structures correspond a celle d’une représentation Fuschienne
(& image injective et discréte) du groupe fondamental de la surface considérée dans PSLs(R), on peut

voir 7(X2) comme une composante de la variété de caractéres Hom(w(X), PSLa(R))/PSL2(R).

Depuis, des exemples en dimensions supérieures ont montré que ’espace de Teichmiiller n’admet pas,
en général, ni de structure de variété ni d’espace analytique (voir [74, §12] pour des exemples). Cela

force donc & élargir la notion de structure analytique. Ce sont les travaux de Laurent MEERSSEMAN [74]
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qui permettent, sous une hypothése assez peu restrictive, de munir I’espace de Teichmiiller d’une variété
X d’une structure de champ analytique (voir le chapitre 2 pour les définitions). Plus rigoureusement,
soit X est une variété différentiable compacte (orientable et de dimension paire) et V' est un ouvert de
Pespace Z(X) des structures presques complexes intégrables sur X. S’il existe un entier a tel que pour
toute structure complexe J dans V, le groupe d’automorphisme de (X, J) soit de dimension inférieure a
a, alors I'espace de Teichmiiller de X admet une structure de champ analytique, au sens ou il admet un
atlas analytique : son groupoide d’holonomie.

Méme si la construction de ce groupoide d’holonomie est faite dans l'article [74] il est, en général,
difficile de donner explicitement un atlas plus agréable pour le champ de Teichmiiller d’une variété X
fixée. Celui des tores est maintenant bien connu (voir encore [74] ou exemple des tores 2.G) et un autre

exemple est celui construit par Clément FROMENTEAU dans sa thése pour les variétés de HOPF.

Historiquement, pour répondre au probleme de modules des structures complexes, une premiére ap-
proche fut celle apportée par les outils développés par KODAIRA, SPENCER et KURANISHI dans un cadre
local, celle des déformations de structures complexes au dessus du germe d’un point base (voir par exemple
le célebre livre de MORROW et KODAIRA [76] & ce sujet). En particulier, au milieu du 20°™¢ siecle, Ku-
RANISHI [66] prouvait lexistence d’une famille compléte et semi-universelle pour toute variété complexe
compacte, dont la base, qui admet une structure d’espace analytique complexe, porte aujourd’hui son
nom. Depuis, l'intérét porté a cet espace analytique n’a cessé d’augmenter et de nombreux exemples
d’espaces de Kuranishi ont été explicités.

Un contexte qui fournit d’autres exemples de variétés complexes compactes et qui est le sujet d’étude
de cette these, est celui des quotients de groupes de Lie et il est donc naturel de s’intéresser aux espaces
de Kuranishi de tels quotients. Par exemple, I'espace de Kuranishi d’un quotient d’un groupe de Lie
complexe G résoluble de dimension 3 par un sous-groupe discret co-compact (dont on connait la liste
exhaustive) est connu grace aux travaux de NAKAMURA [81]. Depuis, I’étude de ces solvmanifolds a été
largement développé et on sait aujourd’hui expliciter un large nombre d’espaces de Kuranishi de ces
variétés (voir par exemple [54]). Mentionnons aussi que le cas analogue des nilmanifolds, obtenus comme
quotients de groupes de Lie nilpotents, a lui aussi été traité en 2008 par ROLLENSKE dans [88].

Toujours dans le contexte de variétés holomorphiquement parallélisables (1’équivalence avec le cas des
quotients de groupe de Lie est donnée par le théoréme [101] de WANG), on peut aussi énoncer le résultat
[86] de RAGHUNATHAN. Dans le cas d’un quotient d’un groupe de Lie complexe G semi-simple et sans
facteur de rang 1 par un sous-groupe I' discret co-compact, ce théoreme affirme que le premier groupe
de cohomologie de T & valeur dans le T-module g (Palgébre de Lie de G munie de la représentation
adjointe) est trivial. Ceci a pour conséquence que l’espace de Kuranishi de G/T" est un point dont on
déduit la rigidité de cette variété, c’est-a-dire toute structure complexe sur G/T" suffisamment proche de
la structure initiale est isomorphe & celle-ci. Remarquons qu’en particulier pour SL, (C), avec n = 3, ce
résultat s’applique.

1l fallut attendre pres de 30 ans pour que le cas de SLy(C) soit traité [31] par Etienne GHYS (voir
en particulier le chapitre 5). Cette réponse au cas laissé en suspens par RAGHUNATHAN s’appuie prin-
cipalement sur la comparaison des variations de la structure complexe et celles d’une certaine structure

géométrique, au sens de THURSTON [97].
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Peu avant les années 1980, THURSTON conjectura, de maniere analogue au cas de la dimension 2
via le théoréme d’uniformisation, que les 3-variétés réelles compactes peuvent toutes étre décomposées
en sous-variétés admettant 'une des huit structures géométriques appelées géométries de THURSTON
[97]. Cette conjecture fut démontrée par G. PERELMAN en 2003, travail qui lui vaudra en 2006, la plus
haute distinction Mathématiques : la médaille Fields, qu’il refusera (il refusera 4 ans plus tard, le prix
d’un million de Dollars offert par I'Institut de Mathématiques Clay pour avoir résolu au passage la
conjecture de POINCARE). Le lecteur intéressé pourra consulter [84] pour un apercu de la preuve. Ces
structures géométriques sont construites selon un principe plus général et qui s’étend au dela du cadre
de la dimension 3. L’idée est de considérer des géométries « modeles »qui sont construites de la fagon
suivante. On se donne une variété simplement connexe X sur laquelle un groupe de Lie G agit transi-
tivement et dont les groupes d’isotropie sont compacts. On construit ensuite une (G, X)-structure sur
une variété M en identifiant localement M a cet espace homogene X et en identifiant les changements
de cartes avec des restrictions d’éléments de G. Signalons que cette construction de (G, X)-structures
est particuliéere puisque dans le cas général les hypotheses sur les groupes d’isotropie et sur le caractere
transitif de 'action ne seront pas requis. De fagon générale, la théorie des groupes de Lie permet une

compréhension fine de la géométrie de X et apporte ainsi un intérét évident a ces structures géométriques.

S’appuyant sur les idées ’EHRESMANN, THURSTON exhibe une relation entre les (G, X)-structures
d’une variété M et les G-représentations du groupe fondamental de M (via le morphisme d’holonomie
de la (G, X)-structure). Le principe connu aujourd’hui sous le nom d’Ehresmann-Thurston affirme que
localement, les déformations de I’holonomie correspondent aux déformations de cette (G, X)-structure.
Plus formellement, l’application qui, & une (G, X)-structure sur une variété M, associe son holonomie
réalise un homéomorphisme local entre l'espace des (G, X)-structures et celui des G-représentations de
m1(M). Depuis, les travaux sur les variétés de représentations ont connu un essor fulgurant autant par
leur nombre que par leur diversité (voir la fin du chapitre 4 pour une courte bibliographie du domaine

ou consulter article d’A. SIKORA [90, p. 19] pour en voir une trés compleéte, a visée plutdt algébrique).

Dans le cas traité par E. GHYS, puisque SLo(C) peut-étre vu comme la complexification de la sphére
de dimension 3, les quotients de la forme SLy(C)/T" (ot T' est un sous-groupe discret co-compact et sans
torsion) sont munit d’une (G, X )-structure naturelle, avec X = SLy(C) et laction de G = SLy(C) x SLy(C)
par translations & gauche et & droite correspond aux parallélismes de Clifford de la sphére S3. L’holo-
nomie de cette (G, X)-structure des quotients SLy(C)/T" correspond évidemment & la paire constituée de
la représentation triviale & gauche et de 'inclusion de T dans SLo(C) & droite. Il résulte des considéra-
tions rappelées précédemment que les déformations infinitésimales de cette structure correspondent aux

déformations de cette paire de morphismes.

Par ailleurs, la déformation de sous-groupes discrets co-compacts a été largement étudiée et un des
résultats célebres dans ce contexte est celui de la rigidité de Mostow qui affirme qu’un isomorphisme entre
deux réseaux co-compacts I' et A dans un groupe de Lie simple H non localement isomorphe & SLy(R)
provient d’une conjugaison interne de H. Une conséquence directe de ce résultat affirme que le morphisme
d’inclusion d’un réseau I' dans SLy(C) est rigide (notons que la rigidité locale était déja connue par un

théoréme de CALABI-WEIL) et il s’ensuit que les déformations infinitésimales de la (G, X )-structure du
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quotient SLo(C)/T sont en bijection avec les classes de conjugaison des déformations infinitésimales de la
représentation triviale pg : I' — Id.

Apreés avoir montré que les déformations de la (G, X)-structure de SLy(C)/T" restent completes [31,
Lemme 2.1] (c’est a dire que les (G, X)-structures sont obtenues par quotient de X par 1’holonomie)
dans un voisinage de la représentation triviale, le résultat principal [31, Théoréme A] de ce méme article
provient de la comparaison des déformations de la structure complexe de SLy(C)/T" avec celles induites
par les structures complexes induites par SLy(C) par passage au quotient. Plus rigoureusement, 'auteur
montre que la famille tautologique au dessus de la SLy(C)-variété de représentation de ' pointée en pg
est la famille de Kuranishi de SLy(C)/T.

Dans un contexte un peu différent, les travaux de KOBAYASHI (par exemple [59] et [60]), BENOIST [§]
suivis, entre autre, de ceux de KASSEL [50] concernant les actions de réseaux sur des espaces homogenes
réductifs ont permis de donner des critéres de propreté de ces actions. En particulier, GUERITAUD et
KASSEL [42] montre par exemple que cette condition de propreté est ouverte. Ceci a pour corollaire la
généralisation du résultat [31, Lemme 2.1] sur la complétude locale dont on a précédemment esquissé les
intéréts. Signalons aussi les travaux de Nicolas THOLOZAN [93] qui ont, en particulier, permis de montrer
dans le contexte des (L x L, L)-structures (ot L est un groupe de Lie de rang réel 1), que le domaine
des (L x L, L)-structures complétes (sur une variété M de méme dimension que L) forme une union
de composantes connexes de 'espace de déformation Def . ry(M) définit comme espace des classes
d’équivalences de paires d’application développante et d’holonomie par l'action de conjugaison et par
Paction de Diff®(M).

L’ensemble de ces résultats meénent donc naturellement a la question de la généralisation des résultats
de GHYs. Plus particuliérement, soit I" est un sous-groupe discret co-compact de SL2(C) dont on note ¢ son
inclusion et soit p une SLa(C)-représentation de I' admissible au sens ot (p, ¢) € Hom(T', SL(C) x SL3(C))
est ’holonomie d’une (SLz(C) x SLo(C), SL2(C))-structure compléte sur une variété, notée M. Voici les

deux questions qui motivent cette these et a laquelle elle tente de répondre :

Question 1 (Généralisation du théoréme A de [31]). Toute structure complexe sur M44 proche de celle

de M, est-elle biholomorphe a celle sur M,, pour une certaine représentation n proche de p?

Question 2 (Espace de Teichmiiller de SLo(C)/T). Si la réponse & la question précédente est affirmative,
peut-on « globaliser »le résultat précédent et obtenir I'espace de Teichmiiller de SLo(C)/T"?

Cette theése répond positivement & la premiére question sur un ouvert de Zariski (analytique) de
R(T)? et de fagon partielle a la deuxiéme en donnant un sous-champ ouvert du champ de Teichmiiller de
SLy(C)/T.

Des lors, nous pouvons formuler les deux conjectures suivantes :
Conjectures.

e La variété des représentations admissibles est compléte en tous points.

o Le quotient (champétre) de R(T)* par laction de SLy(C) est une union de composantes connexes
dans Uespace de Teichmiiller de SLo(C)/T.
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2

Contenu du manuscrit

Afin de répondre a ces questions, il est nécessaire de revenir sur ’ensemble des concepts, définitions et

résultats mathématiques évoqués dans l'introduction. Voici, en résumé, le plan abordé dans cette these

pour arriver a cet objectif. Nous profiterons de ce plan pour énoncer les contributions de cette theése.

2.1

Chapitre 1

Chapitre 2

Chapitre 3

Chapitre 4

Révision de la littérature

Le premier chapitre sera consacré a une courte introduction a la théorie classique de KODAIRA
et de SPENCER concernant les déformations infinitésimales de structures complexes. Nous énon-
cerons le célebre théoreme de KURANISHI. Nous rappellerons la construction de I'application de
Kodaira-Spencer et comment celle-ci permet de controler la complétude ainsi que la versalité d’une
déformation donnée dans le cas lisse. Ce chapitre se cléturera sur le point de vue « faisceautique »de
DouaDY de cette théorie qui permettra, par la suite, d’étudier les obstructions a étendre une dé-

formation a I'ordre 1 aux ordres supérieurs dans le cas qui nous intéresse.

Comme mentionné plus haut dans cette introduction, le champ de Teichmiiller d’une variété com-
plexe compacte n’admet pas en général de structure d’espace C-analytique, il faut le considérer
comme champ. Nous discuterons alors dans un second chapitre les notions de catégories fibrées en
groupoides et de champs. Nous verrons que ce champ (analytique), sous des hypotheses de finitude
de la dimension des groupes d’automorphismes des structures complexes, admet un atlas, ce qui
munit ce champ d’une structure analytique. Le point de vue généraliste qui y est adopté n’a pas
un objectif purement théorique mais bien pratique, puisqu’il nous permettra de travailler aussi bien
avec des champs analytiques qu’avec des champs algébriques et ainsi de faire une comparaison des

champs de caracteres sur les sites /Anc et Sch.

Nous reviendrons dans ce chapitre sur les notions de (G, X)-structures et morphisme d’holonomie
ainsi que sur I'étroite relation qui lie les déformations de ces objets géométriques via le principe
d’Ehresmann-Thurston. Ce sera aussi l'occasion d’aborder le probléme de complétude des (G, X)-
structures et d’énoncer les récents résultats sur cette question, en particulier dans le contexte des
(L x L, L)-structures. Nous verrons aussi comment une (G, X)-structure complete sur M avec X
une variété complexe et G un sous-groupe du groupe des biholomorphisme de X permet de définir

une structure complexe sur M.

Ceci nous amenera naturellement, dans un quatriéme chapitre, a la notion de représentations du
groupe fondamental dans un groupe de Lie G ainsi qu’a la déformation de ces représentations.
Par ailleurs, la géométrie locale d’une variété de représentations Hom(71 (M), G) est naturellement
reliée a ’étude de la cohomologie de ce groupe fondamental a coefficients dans 'algebre de Lie
g de G dont la représentation adjointe lui confére une structure de 71 (M )-module. Par exemple,
il est bien connu que l'espace tangent de Zariski a cette variété de représentation est isomorphe
(via la construction de WEYL) au groupe des 1-cocycles (morphismes croisés) Z! (w1 (M), g). Nous
profiterons donc de ce chapitre pour donner les quelques rappels de cohomologie des groupes qui

nous serviront dans les chapitres suivants.

Chapitre 5 Ce chapitre sera consacré a I’étude des déformations des structures complexes des espaces homogenes

Partie 1
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2.2

SLo(C)/T dans lequel nous reviendrons dans un premier temps sur les résultats de larticle de GHYS
[31]. En particulier, nous énoncerons le théoréme qui affirme la versalité de la famille tautologique au
dessus de la variété de représentations pointée en py. Nous énoncerons brievement la classification

de ces déformations qui nous sera utile pour la suite.

Contributions

Chapitre 5 Dans la deuxiéme partie de ce chapitre, nous étudierons plus en détail la géométrie de ces variétés

Partie 2

Chapitre 6

et leur groupes d’automorphismes. En particulier, un groupe qui jouera un réle important dans le
chapitre 7 est le groupe d’isotropie d’un point dans ’espace de Teichmiiller. De facon générale pour
une variété M, ce groupe, noté Autl(M ) est le sous-groupe des automorphismes de M qui sont
C*-isotopes a 'identité (notons qu’il existe des exemples de variétés pour lesquelles Aut? = Aut')
. Nous aurons donc besoin de la connaissance du groupe d’automorphismes de M, et en particulier

de sa composante connexe de l'identité

Proposition (théoréme 5.4.4). Soit p une représentation admissible, alors la composante connexe
de Uidentité du groupe des automorphismes de M, est isomorphe a la composante conneze de
Uidentité du centralisateur Csy,c)(p(I')) de p(I') dans SLa(C).

Nous caractériserons ensuite le groupe Autl(/\/lp)

Proposition (théoreme 5.4.5). Soit p une représentation admissible, alors Autl(/\/l,,) est isomorphe
au centralisateur de Csy,,(c)(p(I')) de p(T') dans SLy(C).

En particulier, pour des représentations dont le centralisateur (de I'image de I') n’est pas connexe,
1 0

on a Aut” (M,) # Aut”(M,).

Nous profiterons aussi de 'occasion pour montrer que les variétés M, sont toujours C*-difféomorphes

a (SLy(C)/T) % .

Proposition (théoreme 5.3.11). Pour toute représentation admissible p, la variété M, est C®
difféomorphe a (SLy(C)/T) %4,

Ainsi, lorsque nous nous intéresserons a 1’espace de Teichmiiller de SLo(C)/T", nous pourrons consi-

dérer toutes les composantes de la variété de représentations admissibles.

Le sixieme chapitre portera sur la généralisation de la complétude de la famille tautologique au
dessus de la variété de représentations. Nous commencerons par donner quelques résultats sur
la cohomologie des variétés construites par GHYS. En particulier, le résultat qui généralise [31,

Théoréme 4.1] est le suivant :

Théoréme (théoreme 6.1.1). Soit p une représentation admissible. Notons F, le faisceau des
germes de sections localement constantes du fibré plat TM, et ©, le faisceau des germes de sections
holomorphes de TM,, alors, il existe un ouvert Zariski (analytique) V de R(T')*" tel que pour tout

p eV le plongement de F, dans ©, induit un isomorphisme

Hl(Mm]:p) = Hl(Mm@p)
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Chapitre 7

Ces groupes nous serviront d’outil de comparaison des déformations de la structure complexe et
des déformations des (SLa(C) x SLy(C), SLa(C))-structures de ces variétés et nous montrerons que,
comme dans le cas traité par E. GHYS, cette comparaison meéne a la conclusion de la complétude

de la famille tautologique

Théoréme (de complétude, théoréme 6.0.1). La déformation de la structure complexe d’une variété
M, donnée par la famille tautologique au dessus de Uouvert V de la variété de représentations

correspondant a l’ensemble des représentations admissibles est compléte.

En particulier, ce résultat donnera une réponse affirmative a la question 1.

Un corollaire intéressant est que ’on obtient ainsi tous les espaces de Kuranishi de ces variétés (qui

permet des constructions plus ou moins explicites selon les cas) :

Corollaire (théoréeme 6.4.1). Soit T' un sous-groupe discret co-compact dans SLa(C) et p une re-

présentation admissible. Alors, tout espace C-analytique Z contenant p et localement transverse® a

la SLo(C)-orbite de p, définit (en tant que germe) l’espace de Kuranishi de M,,.

Enfin, nous terminerons ce chapitre par expliciter I’application de Kodaira-Spencer. En particulier,

nous montrerons que

Proposition (théoréme 6.3.1). L’application de Kodaira-Spencer associée d la famille tautologique

au dessus de V< R(I)*° pointée en p € V est donnée par la composition d’applications :
T7R(T)* ~ Z'(T,512(C),) = H'(L,s1a(C),) ~ H' (T, Hy) ~ H'(M,,0,)
ot p: ZYT,sl3(C),) — HY(T,s15(C),) est la projection d’un cocycle sur sa classe de cohomologie.

Nous verrons ensuite comment les résultats de ces deux chapitres peuvent étre « globalisés »et
énoncés dans un cadre champétre. Il y sera démontré par exemple que le quotient de l'ouvert V <
R(T)? des représentations admissibles dans la variété de représentation par ’action de conjugaison
de SLs(C), considéré comme champ, est en fait un ouvert du champ de Teichmiiller. Nous répondrons

ainsi & la question 2 de maniere partielle.

Théoréme (théoreme 7.1.4). Le champ des caractéres admissibles [V /SLy(C)] est un sous-champ
ouvert du champ de Teichmiiller de SLo(C)/T.

De fagon analogue, nous montrerons

Théoréme (théoréme 7.1.6). Le champ quotient
[V/ ((Aut(T") x SLy(C))/T)]

est un sous-champ ouvert du champ de modules de Riemann de SLo(C)/T.

1. si p est un point singulier, on prend une variété transverse Z a lorbite dans une désingularisation 7 : W — R(I")® de
R(I')® en p et on prend son image par 7.
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Nous conjecturons aussi dans ce cas que ce sous-champ est un sous-champ fermé du champ de
modules de Riemann de SLy(C)/T.
Nous profiterons aussi de ce chapitre pour énoncer les intéréts de cette vision champétre en oppo-

sition a la théorie classique des invariants géométriques.

Chapitre 8 Nous conclurons cette theése avec quelques exemples d’applications. Les premiers exemples qui per-

mettent des calculs plus ou moins explicites sont ceux donnés par les variétés obtenues comme

chirurgie de Dehn sur des complémentaires de nceuds dans S3.

La majeure partie des contributions énoncées ici ont permis la rédaction de l’article [48].
Nous ’avons vu, cette these s’inscrit a I'intersection de plusieurs domaines des Mathématiques et une

fagon de résumer les liens qu’elle partage avec ces domaines est donné dans le schéma suivant :

Holonomie

Actions non propres Cette Variétés non completes

these

Quotients de groupes
] GL,, (C)-structures
de Lie complexes

S &
2 s
et Ures comv\e

FIGURE 1 — Diagramme de Venn
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CHAPITRE 1

THEORIE CLASSIQUE DE LA
DEFORMATION

OUR PERMETTRE UNE APPROCHE GLOBALE de la question des déformations de la structure com-
P plexe sur une variété complexe compacte, il est indispensable de revenir dans un premier temps
sur l'approche classique (et historique) de KODAIRA, SPENCER et KURANISHI dans un cadre local. En
effet, la construction du champ de Teichmiiller d’une variété X présuppose la connaissance des espaces
de Kuranishi pour chacune des variétés complexes (X diff |y ), ot J est une structure presque compleze in-
tégrable. Nous reviendrons en particulier sur une des contributions des travaux de KODAIRA et SPENCER
concernant l'application qui porte leur nom et qui fournit un critere de complétude et de versalité d’'une
famille de déformation sur une base lisse. Cependant, puisque les familles que nous aurons a considérer
plus tard n’ont généralement pas de bases lisses, nous profiterons de ce chapitre pour revoir comment les
ordres supérieurs de déformations permettent de controler ces deux critéres en plus grande généralité. A
cette occasion, nous adopterons le point de vue « faisceautique »de DOUADY qui nous sera utile dans la
suite.

La principale référence utilisée pour ce qui suit est le livre Complex manifolds de MORROW et KODAIRA
[76]. La derniére section est quant & elle, essentiellement tirée de [24]. Le lecteur pourra aussi trouver une

littérature plus moderne par exemple dans [17].

1.1 Déformations de structures complexes

Nous commengons naturellement ces brefs rappels par les notions de structures presque complexes et

d’intégrabilité de celles-ci ainsi que de leurs déformations infinitésimales.

1.1.1 Structures complexes

Définition 1.1.1. Soit X un espace topologique Hausdorff localement homéomorphe & un ouvert V de
R2™. Une carte locale complexe de X est la donnée d’un ouvert U et d’un homéomorphisme z : U —

V = 2(U) € C" ~ R?". Deux cartes locales (Uy, z4) et (Ugs, z3) sont dites compatibles si la fonction de

11
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transition

foa=2802": 24(Us nUg) — 25Uy 0 Up)

est holomorphe.

Un atlas holomorphe de X est une collection U = {(U,, 24)} de cartes locales toutes deux & deux
compatibles et telles que |, Un = X.

Un atlas holomorphe U = {(U,, z4)} est dit mazimal si toute carte locale complexe (U, z) compatible

avec toutes les cartes (Uy, 2o) est aussi dans U.

Définition 1.1.2. Une variété complexe X de dimension n est un espace topologique Hausdorff & base

dénombrable d’ouverts muni d’un atlas holomorphe maximal.

Remarques.

e Via I'isomorphisme C" ~ R?" et en oubliant le critére d’holomorphie, on obtient la variété différen-

tiable sous-jacente que 1’on notera X %4

e La donnée d’un atlas holomorphe U = {(U,, 24)} détermine (de facon unique) un atlas holomorphe

maximal U™?* := {(U, z) | carte locale complexe compatible avec (Uy, 24), Va}.

Les espaces C-analytiques feront partie du lexique courant de cette these et il est donc naturel de les

définir ici.

Définition 1.1.3. Un espace annelé est la donnée d’une paire (X, Ox) ot X est un espace topologique
et Ox est un faisceau d’anneaux sur X appelé faisceau structural de X.

Un espace localement annelé est un espace annelé (X, Ox) tel que les fibres Ox , soient des anneaux
locaux (c’est-a-dire qu’elles possédent un unique idéal maximal).

Un morphisme entre espaces localement annelés (X, Ox) et (Y, Oy ) est une paire (f,¢) ot f: X - Y
est une application continue et ¢ : Oy — f4(Ox) est un morphisme de faisceaux compatible avec les

anneaux locaux (c’est-a-dire que ¢ envoie I'idéal maximal de Oy, ¢, sur I'idéal maximal Ox ;).

Définition 1.1.4. Un C-espace modéle local est un espace localement annelé (X,Ox) ot X est le lieu
des zéros commun d’un ensemble fini de fonctions holomorphes f; : U c C*" - C, i =1,--- ;m et Ox
est la restriction & X du faisceau Oy /(f1,- -, fm)-

Un espace analytique compleze (ou espace C-analytique) est un espace localement annelé (X, Ox) tel
que pour tout x € X, il existe un voisinage U de z tel que (U, Oy) est isomorphe & un C-espace modele
local.

Un morphisme d’espaces C-analytiques est un morphisme d’espaces localement annelés.

Remarque. La notion d’espace C-analytique généralise celle de variété complexe. En effet, une variété
complexe peut étre définie comme un espace C-analytique qui est en chacun de ses points isomorphe a

un domaine U de C™ et de faisceau structural donné par les fonctions holomorphes sur U.

Nous ne donnerons pas plus de détails sur la théorie de ces espaces. Le lecteur intéressé pourra
consulter [40] ou bien [37].

Définition 1.1.5. Soit X une variété différentiable de dimension paire. Une structure presque complexe

sur X est la donnée d'un endomorphisme J : TX — T X, de classe C*® et vérifiant J? = —Id.
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1.1. Déformations de structures complezes

La structure J est dite intégrable si
|70, 750X | = )X

ol T}’OX (resp. T(J)’IX ) est le sous-fibré du fibré tangent complexifié TX ® C formé des vecteurs propres

de J associés a la valeur propre i (resp. —1i).
L’intérét de cette condition d’intégrabilité est pleinement justifiée par :

Théoréme 1.1.6 (NEWLANDER-NIREMBERG [82]). Soit X une variété différentiable compacte et J une
structure presque compleze sur X. Alors, J est intégrable si, et seulement si, il existe un atlas {¢; : U; —

C"™} de X compatible avec J au sens ou
VpeU;, Vve T, X, dyp;(J(v)) =1i.dppj(v)

Autrement dit, ce théoreme affirme que la donnée d’une variété complexe X est équivalente a la
donnée de (la variété différentiable sous-jacente) X % et d’une structure presque complexe intégrable.

Remarquons que la donnée d’une structure presque complexe est équivalente & la donnée du sous-
fibré T)' X. En particulier, si J’ est une structure presque complexe proche! de J, la projection 7%! :
TX®C—->T 3’1X réalise un isomorphisme entre 7' 3’1 et T?,’lX et on obtient alors une application

7011 210

D G ' ey

que l'on peut facilement interpréter comme une (0, 1)-forme & valeur dans 7°X. De facon réciproque,
une telle forme ¢ € A% (T10X) définie un sous-fibré Tf,),’lX de TX ® C et par la remarque précédente,

I'opérateur J'. De plus, la structure complexe J de départ est représentée par 0 € A%H(T10X).

1.1.2 Familles et déformations infinitésimales

Une maniere agréable de regarder les variations infinitésimales d’une structure complexe est donnée

par les familles :

Définition 1.1.7. Soit X une variété complexe compacte. Une déformation lisse (ou famille) de X est
la donnée d’un morphisme lisse et propre © : X — B entre variétés complexes (ou plus généralement
entre espaces C-analytiques) connexes X et B et d’un point b € B tel que la fibre A} au dessus de b soit

biholomorphe & X. La donnée d’un tel biholomorphisme i : 771(b) — X est appelé marquage.

La notion de marquage intervient principalement dans le role du groupe d’automorphisme de la fibre
centrale. Ici, nous considérerons toujours des déformations marquées.

Pour justifier la pertinence de cette définition, rappelons le résultat suivant :

Théoréme 1.1.8 (Lemme d’EHRESMANN [28]). Soient M et N deux variétés différentielles. Une sub-

mersion surjective propre et lisse f : M — N est une fibration localement triviale.

1. proche au sens de la topologie de la convergence C® : une suite d’opérateurs {J,} tend vers zéro si elle converge vers
zéro pour toute norme C* k > 0 sur tout compact.

13



CHAPITRE 1 — Théorie classique de la déformation

En particulier, ce résultat affirme qu’une déformation (lisse) 7 : X — B d’une variété complexe X
est localement triviale (au sens différentiable). Autrement dit, pour un voisinage U du point base b € B
de la déformation, pour tout t dans U, les fibres 7=1(¢) sont C*-difféomorphes & la fibre centrale, c’est
A dire & X9 1l n’existe cependant pas d’analogue complexe et on peut alors, dans certain cas, obtenir
de nouvelles structures complexes sur X “f sans modifier la structure différentiable.

Dans tout le chapitre 2, nous nous appuierons sur un exemple afin d’illustrer la nécessité des notions

qui y seront abordées. Il est donc naturel de la faire intervenir ici déja.

Exemple des tores 1.A. Rappelons qu'une courbe elliptique est définie comme le quotient de C par un
réseau I' engendré par deux vecteurs (a coefficients complexes) et R-linéairement indépendants wq, ws. I
est clair que C* agit sur C par multiplication et que 1’on peut toujours se ramener au cas ot wy; = 1 et

we =7 € H = {z e C|I(z) > 0}. On consideére alors I’action de I' sur C engendrée par
z—>z+1 et z—z4+7T

et on note T, le quotient de C par cette action. Cette construction donne, de maniére assez évidente,
une fagon de trouver une famille au dessus de H, il suffit de prendre le quotient de H x C par l'action
engendrée par

(r,2) = (1,24+1) et z— (1,2+7)

On note G le groupe engendré par ces transformations.
Considérons I'application de projection p; : (H x C)/G — H. Il est clair que p;'(7) = T, et on obtient
ainsi une famille de T. Le lemme d’Ehresmann affirme que cette fibration est localement triviale. Puisque

H est contractile, elle I’est donc globalement et on obtient
(Hx C)/G ~H x §' x §*
—_——
:(TT)dsz

11 est important de noter ici que ce quotient (H x C)/G est un produit pour la structure différentiable

mais que les fibres T ne sont pas localement biholomorphes.

1.2 Versalité et théoréme de Kuranishi

On voudrait maintenant pouvoir comparer les déformations entre elles et trouver une déformation qui
permette d’obtenir toutes les structures complexes suffisamment proches de la structure complexe initiale
et qui soit minimale parmi les déformations ayant cette propriété. Commencons par donner la notion de

morphismes entre déformations.

Proposition 1.2.1. Soit 7 : X — B une déformation marquée pointée en b d’une variété complexe
compactes et f : B' — B un morphisme d’espaces C-analytiques avec f(b') = b. Le produit fibré X x ¢ g B’
admet une structure de déformation marquée de X sur B’ pointée en b appelée déformation pullback de

m:X — B par [ que l'on notera f*X.

Cette proposition est essentiellement due a la stabilité des propriétés lisses et propres par changement
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1.2. Versalité et théoreme de Kuranishi

de bases.

Définition 1.2.2. Deux déformations marquées 7 : Xy — B et my : X — B pointées en b sur une
méme base sont dites isomorphes si il existe un biholomorphisme f : X; — X5 tel que w3 o f = 71 et tel
que f préserve les marquages, c’est-a-dire f oi; = iy ol 71 et 71 sont respectivement les marquages des

familles 7 : X7 — B et mg : Xy — B.

Définition 1.2.3. Deux déformations marquées m; : X3 — Bj et 75 : Xy — B pointées respectivement
en by et by sont dites biholomorphes si il existe un biholomorphisme f : By — Bs tel que f préserve les

points bases (c’est-a-dire f(b1) = by) et tel que f*AX5 soit isomorphe & Xj.

1.2.1 Complétude et versalité

Une question naturelle, & laquelle KURANISHI, KODAIRA et SPENCER ont répondu, est de savoir s’il

existe une déformation universelle.
Définition 1.2.4. Soient X une variété complexe compacte et 7 : X — B une déformation marquée de
X pointée en b. La déformation est dite

e compléte si toute autre déformation p : M — S marquée, pointée en s, est localement isomorphe

en s, au pullback de X par une application holomorphe f : S — B qui respecte les points bases,

o verselle (resp. universelle) si, en plus d’étre complete, la différentielle de f au point base est unique

(resp. f est unique),

Remarque. On peut réécrire la définition de complétude de la fagon suivante. La déformation 7 : X — B
est compleéte si pour toute déformation p : M — S pointée en s, il existe des voisinages U € Bet V < S
des points bases et une application holomorphe f : V' — U qui préserve les points bases et telle que 1’'on

ait le diagramme commutatif suivant :

M|,y — (X m ) — Xl

~_| I

v— 1 U

1.2.2 Théoréme de Kuranishi

Soit X une variété complexe compacte et notons .J sa structure complexe. Nous I’avons vu, I’ensemble
des structures complexes proches de J s’identifie & un ouvert de 0 dans 'ensemble A%!(T1°X). Prenons
une métrique hermitienne h sur X et définissons I'opérateur 0 sur 'espace AP (T10X) des (0, p)-formes
a valeurs dans TH0X. Pour ¢ € A»P(T10X) et 1p € A%P~H(T10X), la condition

h(@,30) = h(@" ¢, ¢)

définit un opérateur adjoint & ¢ et ainsi un opérateur Laplacien
=200 +00
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CHAPITRE 1 — Théorie classique de la déformation

Cet opérateur est un opérateur elliptique du second ordre et la théorie de Hodge permet une décompo-
sition :

AO,q(Tl,OX) _ HO,q (Tl,OX) ('B DAO,q (Tl,OX)

ot HO9(TH0X) est I'espace des (0, q)-formes harmoniques & valeurs dans 710X,

On définit ensuite I'opérateur de Green G comme 'unique opérateur vérifiant
o =Hy+0Gy, ¢eA"(THX)

ou H est la projection sur la partie harmonique.
Soit 71, -+ , N une base de 'espace HY1(T10X) (qui est de dimension finie par compacité de X) des

(0, 1)-formes harmoniques. Soit ¢ : C"™ — A% (T10X) Punique série qui satisfait

TGlo(t), 6(1)]

N | =

o(t) = thi +

avec t = (t1, -+ ,tm) et [,] est le crochet de Lie sur les champs de vecteurs. KURANISHI montre que cette
série converge sur un voisinage de 0. De plus, ¢(t) définit une structure presque complexe intégrable sur
X si, et seulement si, H[¢(t), #(t)] = 0 ot H est la projection sur l'espace des (0, 2)-formes harmoniques.
On pose ensuite K = {t € C™ ~ HOY(THOX)| H[¢(t), ¢(t)] = 0}. Et le germe, en 0, de cet espace
C-analytique parametre les structures complexes sur X.
Finalement l'isomorphisme de DoLBEAULT HOY(TH0X) ~ H(X,©) permet ensuite de réécrire le

théoréme de Kuranishi :

Théoréme 1.2.5 (KURANISHI, [65]). Soit X une variété compleze compacte. Il existe une déformation
(marquée) m: K — K de X qui est compléte et verselle en 0. De plus, l’espace tangent de K a son point

base est isomorphe @ H'(X,0), ou © est le faisceau des germes de champs de vecteurs holomorphes sur
X.

L’espace C-analytique K est appelé l'espace de Kuranishi de X. Voir aussi la note d’Adrien DOUADY
[25] sur le théoréme de KURANISHI.

Remarques. De plus, les critéres de complétude et de versalité de la famille de Kuranishi ont quelques

corollaires [65] qu’il faut mentionner.
1. La versalité de la famille de Kuranishi implique I'unicité du germe analytique de K en 0,
2. la famille de Kuranishi n’est pas seulement compléte en 0 mais en chacun de ses points (quitte &

restreindre si besoin).

Exemple des tores 1.B. Dans I'exemple des tores 1.A, la famille construite est compléte et verselle en

tous points 7 € H.

Remarque. On connalt des exemples de variétés complexes compactes qui n’admettent pas de déformation
universelle (voir par exemple le cas des surfaces de HIRZEBRUCH dans [16] ou le cas des surfaces de
Hopr dans [62]). Il existe cependant des critéres qui assure l'existence d’une telle déformation, le fait

qu’une variété complexe compacte n’admette pas de champs de vecteurs holomorphes globaux en est un
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1.8. Application de Kodaira-Spencer

exemple. Si l'on autorise seulement des déformations sur des bases réduites, on a méme ’équivalence entre
I'universalité de 'espace de Kuranishi et le fait que la fonction h°(t) = dim H"(X;, ©;) soit constante ot
X; = 771(t) et Oy est le faisceau des germes de champs de vecteurs holomorphes sur X;. Voir [102] et

[103] pour la démonstration et [72] pour une discussion détaillée.

1.3 Application de Kodaira-Spencer

Etant donné une déformation 7 : X — B, une question naturelle est de savoir si celle-ci est compléte
et si elle est verselle. Ce sont KODAIRA et SPENCER qui répondront a cette question en donnant un critere

de complétude et de versalité fournit par I'application de Kodaira-Spencer.

1.3.1 En coordonnées locales

Soit X une variété complexe compacte et 7 : X — B une déformation lisse de X pointée en b dont

on note les fibres X; := m~1(¢). On suppose, pour alléger, que B = C et b = 0.

Soit € > 0 et B, := {t € C||t| < £} un e-voisinage de 0. Comme 7 est lisse, on peut trouver {U;|i € I}
un recouvrement de 7~ 1(B;) avec un systéme de coordonnées (zi,---,z% t) sur U; tel que w(2%,t) = t.

) AN
Ou 2% = (28, -+, 2%).

rn
Comme on a supposé la déformation lisse, X est une variété complexe et les coordonnées locales

définies sur les U; sont reliées par des fonctions de transitions holomorphes
2 = f9(, 1)), sur U; nUj

On veut maintenant écrire les changements de cartes holomorphes sur X;. On pose Uf =X;nUj; et

- OfY(2,t) 0

a=1

ol Ox, est le faisceau des germes de champs de vecteurs holomorphes sur X;.

Et puisque
s = S0 = £ (HMEE D, SR EE ) sur Uio Uy o U

en différentiant, on obtient que 6;;(¢) est un cocycle de Cech de X, & valeur dans © X,
Définition 1.3.1. On appelle application de Kodaira-Spencer I'application
0 1 J
KS : H(Xy, TyB) — H'(Xy,0x,), i {6:50)],_0}

Plusieurs choix ont été fait dans la définition mais le lecteur pourra vérifier que {9,» (1) } ne dépend

=0
pas du choix de la carte locale (voir par exemple [76, Proposition 3.1]).
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CHAPITRE 1 — Théorie classique de la déformation

1.3.2 Suite fondamentale

Un fait qui nous sera utile par la suite est que ’application de Kodaira-Spencer est calculable via I’ap-
plication connectante de la suite exacte longue associée a la suite exacte fondamentale d’'une déformation.
Il est donc important de revoir cette construction ici.

Soit X une variété complexe compacte et 7 : X — B une déformation de X pointée en b. L’application

dm: T M| x, T, B induit la suite exacte de Ox,-modules suivante

0—0x, — ¥y, > T,BR0Ox, —0

o Ox, est le faisceau des germes de champs de vecteurs holomorphes sur Xp,
o | x, est le faisceau des germes de champs de vecteurs holomorphes sur X | X,
e T,B® Ox, est identifié¢ au faisceau définit par (1,B® Ox, )(U) = T, B ®c Ox, (U).

On peut donc construire la suite exacte longue associée en cohomologie :
0— H(X,,0x,) = H (X, ¥|y,) > H(X,, ,B® Ox,) » H' (X, 0x,) — - -

Et comme on a supposé X =~ X;, compacte, le principe du maximum affirme que Oy, (X3) = C et

Papplication connectante de la suite exacte longue devient
§* . HY(Xy, TyB) ~ TyB — H'(X,,0x,)

Proposition 1.3.2 (KODAIRA-SPENCER, [76]). L’application connectante 6* est l’application de Kodaira-

Spencer.

1.3.3 Critere de complétude et de versalité

L’intérét majeur de ’application de Kodaira-Spencer est qu’elle fournit un critéere de complétude et

de versalité :

Théoréme 1.3.3 (KODAIRA-SPENCER, [61]). Soit X une variété complexe compacte et m: X — B une
déformation marquée en b € B, avec B une variété lisse. La surjectivité et la bijectivité de l'application
de Kodaira-Spencer associée a cette déformation impliquent respectivement la complétude et la versalité

de la déformation.

Remarquons que, sous ’hypothese d’une base lisse, ce théoréme affirme qu'une déformation est com-
plétement contrdlée par les déformations a 'ordre 1. Malheureusement, cette hypothese est trop restrictive
pour étre appliquée de facon générale dans le cas qui nous intéressera dans cette these. Pour obtenir un
critere de complétude et de versalité d’une déformation sur une base singuliere, il est nécessaire de regarder
les déformations a des ordres supérieurs. Pour ce faire, nous opterons pour le point de vue faisceautique

de DOUADY qui aura l'avantage de s’adapter facilement a notre cas d’étude.
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1.4. Obstructions - Le point de vue d’Adrien DOUADY

1.4 Obstructions - Le point de vue d’Adrien DoOUADY

Avant d’énoncer le prochain résultat, rappelons la définition du cup-produit. Si F; et F» sont deux

faisceaux sur X, alors on définit 'application de cup-produit sur un recouvrement 4 de X :
~ OP(X,U7./—"1) ®Cq(X7u7‘F2) i Cp+q(Xau7f1 ®f2)

par

(= Bir,igrq = Qg siy, @ Bigoeinsg

et on obtient une application sur les groupes de cohomologie correspondants par passage a la limite
inductive sur les recouvrements de X.
Si de plus on a un troisieme faisceau F3 et un morphisme F' entre F; ®F5 et F3 alors on peut composer

le cup-produit et F' pour obtenir une application
Fo —: H?(X,F)® HY(X, F2) — HPTI(X, F3)

En particulier, pour © le faisceau des germes de champs de vecteurs holomorphes sur X et [, ] : O® 0 —
©, on obtient 'application de cup-crochet, naturellement notée [—].

Considérons une variété complexe compacte X. Une question essentielle est de savoir si, étant donné
un élément a € H(X, ©), il existe une déformation 7 : X — B de X telle que a soit 'image d'un vecteur
v € Ty B par l'application de Kodaira-Spencer. Nous verrons, dans cette section, qu’il existe une série
d’obstructions qui permettent d’affirmer en cas d’annulation, ce cas de figure.

Soit 7 : X — B une déformation de X donnée par une famille ot B est, pour simplifier, un voisinage
ouvert de 0 de C (le cas d’un espace C-analytique est décrit dans [24, p.4-10]). Pour tout U ouvert de X,
considérons les biholomorphismes f: W — W', ot W et W’ sont des voisinages ouverts de U x {0} dans
X x B, tels que ces biholomorphismes préservent les fibres (c’est a dire wo f(w) = m(w)) et f|x, = Id, ott
X := 71(0). Considérons alors Z(U) le quotient de I’ensemble de tels biholomorphismes f : W — W’

sous la relation d’équivalence ~ qui identifie deux tels biholomorphismes
f1:W1—>W1’, f22W2—>W2/

des lors qu'il existe un ouvert V- Wy n W5 contenant tous deux U x {0} tel que fi|y = fa|v. Les groupes
(pour la composition) A(U) := E(U)/ ~ forment un faisceau sur X que nous noterons naturellement A.
Il est important de remarquer que A est un faisceau en groupes non-abéliens. L’intérét de ce faisceau est
décrit par DOUADY :
le groupe H*(X, A) s’identifie a I’ensemble des germes de déformations de X au dessus de B < C.

Soit U un ouvert de X. Le groupe non abélien A(U) est filtré : soit Ay (U) le groupe des biholomor-

phismes dans A(U) qui sont tangents a I'identité jusqu’a lordre k — 1. On a alors la filtration
AU)=AU)1 oA (U)D---
On obtient alors une filtration du faisceau A.
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CHAPITRE 1 — Théorie classique de la déformation

Il est montré dans [76] que les quotients successifs Ay /Ax1 sont isomorphes a O le faisceau des germes

de champs de vecteurs holomorphes sur X, pour tout k > 1. Considérons la suite exacte suivante
0— Ap/Api1 =20 > A/Ap, > A/JAj—1 — 0

et notons pour simplifier Q := A/Aj11. Avec ces suites exactes, nous pouvons considérer la suite suivante

extraite de la suite exacte longue associée en cohomologie
)
Hl(ng) - Hl(Xa Qk+1) - Hl(X7 Qk) = HQ(X,@)

Soit ar € H' (X, Q) une déformation & I'ordre k. On appelle obstruction d’ordre k + 1 de a 1’élément
dra € H?*(X,O). Si cette obstruction est représentée par la classe nulle, par exactitude, I’élément a est

obtenu par I'image d'un élément ay,, par I'application H'(X,Qpy1) — HY (X, Qx).

Proposition 1.4.1. Pour un élément a € H'(X,Q,) ~ H*(X,0) l'obstruction da l'ordre 2 est donnée
par la classe de [a — a] € H*(X,0).

Remarque. Pour des exemples de familles verselles données par le cone quadratique définit par annulation

du cup-crochet, le lecteur pourra consulter [35].

Remarque. Nous pouvons continuer les calculs pour trouver les obstructions supérieures et on obtient
que lobstruction & étendre une déformation a 'ordre 2 est donnée par le triple produit de Massey (voir
[24]).

Notons que 'approche de DOUADY permet de construire des déformations formelles. La convergence
de telles déformations formelles est assurée par un théoréme d’Artin [4]. Puisque ce résultat sera utilisé

par la suite, nous profitons de la fin de ce chapitre pour le rappeler.

Théoréme 1.4.2 (ARTIN, [4, Theorem 1.2]). Soient m, n et N des entiers non nuls. Posons x =

(1, ,2n) €EC™, y = (Y1, "+ ,Ym) € C™ et
f(X7Y) = (fl(X’Y)7' o afN(Xay)) =0 (1'1)

un systéme d’équations analytiques (pour tout i =1,--- N, f; est une série convergente en X ety ).
Supposons que §(x) = (Y1(x), -+ ,ym(x)) € C[[x]] soit une solution formelle de (1.1), c’est-d-dire
f(x,5(x)) = 0 et tel que les §;(x) soient des séries formelles sans termes constants. Alors, pour tout

entier c, il existe des séries convergentes (y1(X), -+ ,ym (X)) = y(x) telles que
y(x)=3(x), (mod m°)

ot m est l'idéal mazimal de C[[x]].

Dans notre contexte, a partir de la déformation formelle construite par DOUADY (sous les hypothéses
d’annulation des obstructions supérieures), le théoréme d’ ARTIN précédent permet d’affirmer Pexistence
d’une déformation convergente. En particulier, la caractérisation des obstructions (comme classes dans
H?(X,0)) donne le théoréme suivant, initialement prouvé par KODAIRA, NIREMBERG et SPENCER.
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1.4. Obstructions - Le point de vue d’Adrien DOUADY

Théoréme 1.4.3 ([76, Theorem 2.1]). Si H*(X,0) = 0 alors il existe une famille X — A, compléte et

verselle, ou A, est une boule ouverte de C"* de rayon ¢ > 0 et n = dim H*(X, ©).
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CHAPITRE 2

CHAMPS ANALYTIQUES ET GROUPOIDES

E LANGAGE DES CHAMPS nous sera par la suite indispensable pour permettre I’étude globale des
déformations de structures complexes des variétés SLo(C)/T. Ce chapitre reprend donc les définitions
et propriétés élémentaires de ces outils.

Si dans le précédent chapitre nous nous sommes intéressés aux déformations infinitésimales de struc-
tures complexes sur une variété complexe compacte X, la question qui apparait naturellement est de savoir
si l’on peut trouver un espace admettant une structure analytique (par exemple une structure de variété,
d’espace C-analytique, etc.) paramétrant les différentes classes d’équivalence de structures complexes sur
X% sous Paction du groupe Diff®(M) (resp. sous 'action du groupe Diff " (M) des difféomorphismes
préservant l'orientation), c’est-a-dire Iespace de Teichmiiller (resp. espace de modules de Riemann). En
général pour une variété quelconque, cet espace n’admet pas de structure de variété complexe ni méme de
structure d’espace C-analytique. Nous verrons brievement dans ce chapitre que 'obstruction a I’existence
d’un tel espace est largement reliée a l’existence de groupes d’automorphismes non triviaux des struc-
tures complexes de X. Les champs analytiques, qui généralisent la notion d’espace C-analytique et celle
d’orbifold, permettent (sous certaines hypothéses) de munir cet espace de Teichmiiller d’une structure
analytique.

Dans les premiéres sections de ce chapitre, nous n’allons pas spécifier le site sur lequel nous travaillons
pour pouvoir appliquer ensuite les définitions dans les cadres analytiques et algébriques. L’intérét de cette
différentiation tardive nous permettra de travailler sur I’espace de Teichmiiller, admettant une structure
de champ analytique et parallelement de considérer les champs quotients admettant une structure algé-
brique pour profiter de la vaste bibliographie issue de ce contexte. Notons aussi qu’introduire les champs
algébriques nous permettra, plus tard, de pouvoir comparer le quotient GIT et le quotient champétre de

la variété des représentations (voir la section 7.2).

2.1 Définitions et motivation

Malgré la difficulté techique évoquée, nous nous efforcerons de rendre la lecture de ce chapitre plus
agréable en agrémentant le texte d’un exemple simple sur lequel nous appliquerons quelques définitions
et propriétés. Cet exemple sert en méme temps de motivation & I'introduction de ce langage champétre,

sans lequel il n’admet pas de structure analytique.
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CHAPITRE 2 — Champs analytiques et groupoides

Soit X une variété différentiable compacte de dimension paire, supposée connexe et orientable. On
note Z(X) I'ensemble des structures presque complexes intégrables sur la variété X. Le groupe Diff(X)
des C*-difféomorphismes de X agit sur Z(X) via

Diff (M) x T(X) = Z(X), (f,J) — (df) " o Jodf

On note Diff®(X) (resp. Diff "(X)) le groupe des difféomorphismes de X isotopes & lidentité (resp.
préservant l'orientation de X).

Définition 2.1.1. On a évidemment Diff’(X) < Diff *(X) et on appelle groupe des difféotopies de X
(souvent appelé mapping class group) de X le quotient Diff " (X)/Diff°(X) et on le notera MC(X).

Evidemment

Définition 2.1.2. L’espace de Teichmiiller de X, noté T (X), est définit comme le quotient de Z(X) par
I’action du sous-groupe Diff’(X).

L’espace de modules de Riemann de X, noté M(X), est définit comme le quotient de Z(X) par l'action
du sous-groupe Diff *(X).

Remarquons que 'on a la relation M(X) = T (X)/MC(X).

La question principale évoquée est donc de munir ces espaces topologiques d’une structure analytique.

Exemple des tores 2.C. Dans le chapitre précédent nous avons décrit dans I'exemple des tores 1.A
les déformations du tore de dimension 1. Il est bien connu que l’espace de Teichmiiller du tore coincide
exactement avec H et que la famille universelle est bien celle décrite dans cet exemple. Notons que I'espace
de Teichmiiller admet trivialement une structure de variété.

De plus, le groupe PSLy(Z) agit sur H via

PSLy(Z) x H — H, (A— ( b)) A= OTHY

c d ct +d

en préservant les structures complexes, c’est-a-dire que T, est biholomorphe a T 4 . De plus que PSLy(Z)

correspond au groupe des difféotopies du tore MC(T). On obtient de cette fagon, I'espace de modules de

Riemann M(T) = H/PSLy(Z). Cet espace admet une structure d’orbifold et on a dans ce cas, répondu

a la question en trouvant une structure analytique sur I’espace de modules de Riemann de T. Pour une

représentation de cet espace, on peut regarder l'action de PSLy(Z) sur H engendrée par les transformations
1

T ——, T—T+1
T

On obtient alors le domaine fondamental décrit par la figure 2.1.

Nous traitons maintenant le cas analogue des tores en dimension supérieure pour motiver I'intervention

des champs.

Exemple des tores 2.D. De fagon analogue a la dimension 1, on définit le tore T™ de dimension n

comme le quotient de C" par un réseau 2n-dimensionnel I'. Un tel réseau est la donnée de 2n vecteurs
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2.1. Définitions et motivation

FIGURE 2.1 — Domaine fondamental dans H sous 'action de PSLy(Z).

{wi, - ,wan} (& coefficients complexes) R-linéairement indépendants. Les changements de coordonnées
de C" induisent une action du groupe GL,,(C) sur ces réseaux et on peut montrer de fagon analogue a la

dimension 1 que l'on peut toujours se ramener au cas
wl :el’... 7w7’L :eTL

ol {e;} est la base canonique de C™. Avec un peu de raisonnement sur les matrices (voir par exemple [61,
§5.2] ou [76, p. 22-23]), on peut montrer que 1’espace de Teichmiiller est donné de fagon analogue au cas

de la dimension 1 par :
H, = {Z e M,(C)| det(3Z) > 0}

Et que la famille universelle est obtenue comme quotient de H,, x C™ par ’action engendrée par
(Z,z) = (Z,z+e;) et (Z,z)— (Z,z+Z;)

ou Z; est la i-éme ligne de Z. On note G,, le groupe engendré par ces transformations.

Remarquons que si 'on change les 2n vecteurs {wq,- - ,wa,} qui engendrent notre réseau par une
autre base de I', on obtient deux tores biholomorphes. Autrement dit, on a une action de SLy,(Z) sur
GL2,(R). Cette action sur H,, se réécrit de la fagon suivante. Si A € SLoy,(Z),

()

AZ =(PZ+Q)(RZ+S)™

et Z € H, alors

Pour trouver I'espace de modules de Riemann, il faut donc faire le quotient de H,, par SLo,(Z) via
cette action. Malheureusement, cette action est trés loin de donner un quotient agréable. En fait, en
dehors d’un ensemble de mesure nulle, pour tous points T' € H,,, les SLo,, (Z)-orbites sont denses dans H,,

(le lecteur intéressé pourra consulter [99, Theorem 3.11]).

Autrement dit, 'espace de modules de Riemann M(T™) n’est séparé en presque aucun de ses points
et n’admet donc pas de structure d’espace C-analytique, ni méme de structure orbifold. C’est ici que le

langage champétre intervient.
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CHAPITRE 2 — Champs analytiques et groupoides

Remarque. Dans le cas des tores algébriques et plus généralement dans le cas des variétés abéliennes, la
donnée d’une polarisation (ou polarisation principale) (c’est-a-dire la donnée d’un fibré ample sur une telle
varété et donc d’un plongement dans un espace projectif) permet d’éviter les problemes liés aux sauts de
dimension des groupes d’automorphismes de ces variétés (voir fin de ce chapitre pour une explication du
probléme dans ce cas) et on peut alors dans ce cas construire 'espace de modules des variétés abéliennes
polarisées sans faire appel au langage des champs. Le lecteur intéressé pourra consulter [11] pour plus de

détails.

2.2 Introduction aux catégories fibrées en groupoides et aux

champs

Les difficultés techniques des notions évoquées ici ont conduit I’écriture de ce chapitre a ne contenir
(presque) aucune preuve. Le lecteur intéressé pourra consulter [92] ou [6] pour les détails/preuves de cette

section.

2.2.1 Topologie de Grothendieck

On rappelle, pour des questions de notations, qu'une catégorie € est la donnée d’une classe d’objet
0b(€), d’une classe de morphismes Home (telle que pour tout objet X € 0b(€) il existe 'identité Idx €
Homg (X, X)), de deux applications dom et codom (qui donnent le domaine et codomaine d’un morphisme,
c’est-a-dire f € Home(dom(f),codom(f)) avec dom(f) et codom(f) dans 0b(€)) et d’une application de
composition des morphismes associative notée o.

Nous noterons généralement X € ob(€) et f € Home partout ou cela sera nécessaire, la notation
abusive X € € ou f € € sera utilisée lorsqu’il n’y aura pas d’ambiguité. Nous pourrons aussi parfois écrire

« soit X un objet de € ».

Définition 2.2.1. Soit € une catégorie. Une topologie de Grothendieck sur € est la donnée pour chaque
objet U € ob(€) d’une collection d’ensemble de fleches {f; : U; — U|i € I} dans Homg appelée recouvre-

ment de U telles que
e si f:V — U est un isomorphisme, 1'ensemble {f} est un recouvrement,

o si {f;:U; > Ulie I} est un recouvrement et g : V" — U une fleche quelconque alors, pour tout

i € I, les produits fibrés U; xy V existent et {p; : U; xy V' — V|i € I} est un recouvrement.

e si {f;:U; > Ul|ie I} est un recouvrement de U et si pour tout ¢« € I on a un recouvrement

{9i; : Vi,j = Ui|j € J;} de chaque U; alors, {fiog;;:Vi; — Uli€l,je J;} est un recouvrement.

Remarque. La définition de topologie de Grothendieck donnée ici est plutot la définition de pré-topologie
de Grothendieck. Puisque une pré-topologie induit une topologie de Grothendieck nous éviterons les

définitions superflues.
Définition 2.2.2. Un site est une catégorie € munie d’une topologie de Grothendieck.

Exemples 2.2.3.
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2.2. Introduction aux catégories fibrées en groupoides et aux champs

e La catégorie Top des espaces topologiques munie des familles d’immersions ouvertes (c’est-a-dire
d’applications qui sont des homéomorphismes sur leurs images) U; — U avec | JU; — U surjective
pour chaque objet U € ob(Top) est un site.

e On verra aussi le site Diff des variétés différentiables et des applications lisses entre elles.

e Ou encore Gch la catégorie des schémas avec la topologie étale.

e L’exemple central de cette theése est celui du site analytique 2inc dont les objets sont les espaces C-
analytiques et les morphismes sont les morphismes d’espaces C-analytiques (voir la théoréme 1.1.4).

Les familles de recouvrement sont les recouvrements pour la topologie standard (pas celle de Zariski).

2.2.2 Groupoides et catégories fibrées en groupoides

Définition 2.2.4. Un groupoide est une petite catégorie (c’est-a-dire une catégories dont les classes

d’objets et de morphismes sont des ensembles) dans laquelle tout morphisme est inversible.

Lemme 2.2.5. De fagon équivalente, un groupoide G est la donnée de deux ensembles Gy (ensemble des

fléches) et Go (ensemble des objets) munit de cing applications de structure (s,t,m,u,i) :
e les applications source et cible
S7t : Gl — GO
qui associe a chaque fléche f € G1 un objet source s(f) € Go et un objet cible t(f) € Gy. On note
plus simplement x 4 y avec x = s(f) ety =t(f),
e ['application de composition

m: G1 Xg,Go,t G1 — G

définie sur le produit fibré G1 X¢.c,.s G1 = {(f,9) € G1 x G1|t(f) = s(g)} (noté G1 xg, G1 s’il
n’y a pas d’ambiguité) qui associe au couple (f,g) € Ga la composition m(f,g) = f o g e Gy, notée

parfois multiplicativement fg,
e ['application identité
u: Go i G1
qui d tout objet x € Gy associe 'application identité sur x, x = Gi,

e 'application inverse
7 Gl - Gl

—1

qui a chaque fléeche f € Gy associe la fléche inverse t(f) r s(f).
Ces applications doivent vérifier la commutativité des diagrammes :

e d’identité

GO — Gl GQ — G11
Idh l Id% lt
Go Go

e de composition
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CHAPITRE 2 — Champs analytiques et groupoides

G1 X Go Gl . G1 G1 X Go G1 . G1
pll \LS P2l lt
G] ﬁ GO G1 ﬁ GO

e d’associativité de la composition

IdGl X m

G1 xg, G1 xXg, G1 G xg, G1

mXIdGlJ/ lm
G

G1 XGo G1

e de composition par l’identité

(uos, Idg,)

Gl G1 XGo G1 G1 e Gl XGo G1
T I T I
Gl C7'1

Un tel groupoide sera noté

Gi x4t G1 ™ Gy =3 Gy - G1 -5 G

S
ou encore plus simplement G ? Gy lorsqu’il n’y a pas d’ambiguités sur les applications m,u et i.

Exemple 2.2.6. Il est intéressant dans une premiere lecture de penser a un groupoide comme a une
généralisation de la notion de groupe de la facon suivante.

Soit G un groupe dont on note u I'opération interne et e I’élément neutre. Considérons G donné par
Gy = G, Gy = = et dont les fleches (m, u, i) sont définies par m = p, u : * — e et i(g) = g~ (les flecches
s et t sont trivialement définies). Alors G est un groupoide.

L’intérét de considérer les groupoides est que les groupes d’automorphismes dépendent du point auquel
on se place (en comparaison avec le groupe vu comme groupoide dans lequel il n’y a qu’un point). Les
carquois (c’est-a-dire des graphes orientés) permettent d’illustrer cet apport de la notion de groupoide
par rapport a celle de groupe. Dans cette représentation, un groupe est un carquois avec un point * et
un ensemble de fleche correspondant aux transformations données par G. De 'autre co6té, un groupoide
peut avoir plusieurs objets x, y et z € G et on les fleches sont celles encodées par GG;. On peut alors
facilement se convaincre de la généralisation faite.

Plus tard, lorsque nous considérerons le groupoide du champ de Teichmiiller, nous verrons que le
groupe d’automorphisme d’un point (c’est-a-dire de la paire (X, J) avec J une structure complexe sur X

une variété différentiable) dans ce champ dépendra de ce point.

Exemple 2.2.7. Le groupoide fondamental d’un espace topologique X est le groupoide IT; (X) dont les
objets sont les points de X et les fleches de z € X & y € X sont les classes d’homotopie [v] de lacets
~v:[0,1] = X tel que v(0) = z et y(1) = y. C’est évidemment un groupoide puisque tout morphisme y
est inversible simplement en posant v~ ! :=~o f ott f(t) =1—t.

Remarquons que la définition de ce groupoide est exempte du choix d’un point base dans X . Contraire-

ment a la définition du groupe fondamental d’une variété qui ne peut se passer de cette donnée uniquement
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y

FIGURE 2.2 — Carquois d’un groupe et d’un groupoide.

lorsque X est connexe. De plus, le groupoide fondamental contient la donnée des groupes fondamentaux

de X en chacun de ses points. En effet, il est facile de se convaincre que 'on a :
Ve e X, m(X,z) ~ Auty, (x)(2)

De plus, le théoreme de Van-Kampen, démontré pour les groupes fondamentaux reste valable pour les

groupoides fondamentaux.

Remarque. Un autre trés bon exemple du gain obtenu en considérant les groupoides est tres bien expliqué
et détaillé dans [106]. Redonner cet exemple ici nous écarterait un peu trop de la route, mais nous pouvons
tout de méme en dire quelques mots. Si I'on considére le pavage du plan X = (Z x R) u (R x 2Z), son
groupe de symétrie est relativement simple a expliciter. Il est composé des translations induites par le
réseau I' := Z x 27 et des involutions : réflexions par les lignes horizontales R x {n}, verticales {m/2} x R
pour n et m entiers et les réflexions par les points du réseau IV := §Z x 7. Cependant, les utilisations
courantes de tels pavages sont toujours sur des parties bornées de ce pavage et lorsque 1’on restreint le
groupe de symétries a une telle partie, sa « taille »chute brusquement. Au contraire, en considérant le
groupoide des symétries de ce méme pavage, les restrictions a des parties bornées contiennent encore
toutes les symétrie de cette partie. En d’autres termes, la restriction a un sous-espace B — X de l'action

d’un groupe sur un espace X ne permet pas de rendre compte de toute I'action de G sur B dans X.

Pour continuer dans ce sens, on peut aussi se servir de I’exemple du groupoide fondamental. Pour tout
sous-espace A de X, on peut définir le groupoide fondamental de A dans X II; (X, A) comme la restriction
de IT; (X)) aux éléments qui sont dans A. En suivant les définitions, on voit alors que les morphismes dans
ce groupoide sont les classes d’homotopie de lacets dans X ayant les deux extrémités dans A. Si I'on
prend l'exemple de X := S* x S' et U un voisinage de € X suffisamment petit, on voit facilement que

m1(A) = {0} mais IT; (X,U) contient encore toute I'information de m (X, x).

Exemple 2.2.8. Un groupoide de translation est le type de groupoide qui nous intéressera majoritaire-

ment dans cette thése, nous lui accordons une attention plus particuliére. Une action o d’un groupe (G, .)
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sur un ensemble d’objets M (par exemple une G-variété) défini un groupoide G x M % M avec
s=p:GxM—>M, s(g,m)=m, t=0c:GxM—> M, t(g,m)=oc(g,m)

m:Gx M Xgnp, Gx M —Gx M, m((g1,m),(g2,m2)) = (g2.91,m1)
u:M—>GxM, wu(m)=(em), i:GxM—GxM, igm)=(g"m)

Vérifions sur cet exemple la commutativité des diagrammes

o d’identité :
m —— (e,m) m —— (e,m)
m m
e de composition :

Soient (m1,g1) et (mg,gs) dans G x M tels que o(g1,m1) = my. On a

((g1,m1), (g2, m2)) —= ((92.91),m1)

| |

(g1,m1) ———F,—— M

et

m

((91,m1), (g2, m2)) ——— (g2.91,m1)

) &

(92, m2) ——5— (g2, m2) = (g2-91,m)
e d’associativité de la composition :
Soient (m1,g1), (M2, g2) et (g3, m3) dans G x M tels que o (g1, m1) = m2 et o(ga, m2) = m3.

IdG><M xXm

((91,m1), (92, m2), (93,Mm3)) ((g1,m1), (93-92,m2))

Idgl X ml J{m

((91,m1), (93.92,m2)) m (93-92.91,m1)

e de composition par I'identité :

(uopz, Idax ar)
— o

(uos(g,m),(g,m)) = ((e,m), (g,m))

e

(g'evm) = (g,m)

(g,m)

et

(Idg, ,uoo)

((g;m),uca(g,m)) = ((g,m),(e;0(g,m)))

e

(e'gv m) = (97 m)

(g,m)
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Le groupoide obtenu est appelé groupoide de translation.

Exemple des tores 2.E. En reprenant le travail fait dans I’exemple du tore en dimension n, on définit

le groupoide de Teichmiiller par

(H, x C)/G,, Z:; H,,

ou H, = {Z € M,,(C)| det(3Z) > 0} comme dans l'exemple des tores 2.D. Remarquons que I'image
réciproque d’un point Z € H,, par p; est le tore associé a Z identifié au groupe de translation de celui-ci.
La fleche d’identité u : H,, — (H, x C*)/G, associe & une matrice Z € H,, la paire formée de Z et
du morphisme identité du tore. Puisque s = p; = t, I’application inverse est simplement 1’identité sur
(Hn, x C™)/G,. L’application de composition est induite par la composition de translations et est donc
simplement donnée par ’addition.

De facon analogue on définit le groupoide de Riemann comme le groupoide induit par l'action de
SLan(Z), c’est-a-dire

SLon(Z) % (Hn x C)/Gyn %& 1,
Les fleches s et ¢ sont respectivement données par la projection po et par la composition de I'action de
SLo, (Z) par la projection po. L’application inverse est la méme que pour le champ de Teichmiiller concaté-
née avec la matrice identité dans SLa, (Z) et 'application inverse est induite par 'inversion dans SLa,, (7).
La composition est quant & elle définit de la fagon suivante, si (A, Z, [a]z) € SLan(Z) x (H, x C™)/G,, et
(B,A.Z,[bla.z) € SLon(Z) x (H,, x C™)/G,, de sorte que paoo ((A, Z,[a]z)) = A.Z = pa ((B,A.Z,[bla.z))
alors
(B,[b|A.Z,A.Z) o (A,|alz,Z) = (BA,[a+b(RZ + S)]z,Z)

()

et [u]z désigne la classe d’équivalence du vecteur u € C™ par les transformations définies dans l'exemple
des tores 2.D.

Définition 2.2.9. Un groupoide G; =3 Gy est un groupoide topologique si Gy et G1 sont des espaces

topologiques et dont les fleches s,t, m,u et 7 sont continues et s,t sont des applications ouvertes.
Nous définissons maintenant les catégories fibrées en groupoides pour pouvoir définir les champs.

Définition 2.2.10. Une catégorie fibrée en groupoides au dessus d’une catégorie & (abrégé G-CFG) est

la donnée d’une catégorie X et d’un foncteur 7 : X — & satisfaisant :

e (Ezistence de pullbacks) Pour tout morphisme f : v — u € & et pour tout objet U € X au dessus
de u, c’est & dire 7(U) = u, il existe V € 0b(X) au dessus de v et F : V — U tel que n(F) = f.

o (Unicité a unique isomorphisme prés) Pour tout diagramme
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CHAPITRE 2 — Champs analytiques et groupoides

avec f =7(F), g =7(G) et goh = f, il existe un unique morphisme H : V — W tel que n(H) = h
tel que Go H = F.
Pour la suite

Remarque. En remplacant w par v et h par Id, dans le diagramme précédent, on obtient I'unicité du

pullback a unique isomorphisme pres.

Voici le lemme qui justifie le nom de catégorie fibrée en groupoides.

Lemme 2.2.11. Soit 7 : X > & une CFG. Pour tout objet uw € &, on note X(u) la sous-catégorie de X
formée des objets 7=1(u) et des morphismes 7= 1(Id, : u — u), c’est a dire tout les morphismes F tels

que m(F) =1d,,. Alors, pour tout u € &, X(u) est un groupoide.

Démonstration. Soit ue G et F: X — Y dans X(u). Le foncteur 7 envoie le diagramme

P 1d

X 5y u—y
B sur !

: Idy } Id,
Y u

Pour faire commuter le second diagramme, il faut nécessairement Id, de sorte qu’il existe une unique
fleche G : Y — X de sorte que le diagramme de gauche commute. On obtient alors un inverse de F'. On

utilise I’associativité pour montrer que cet inverse est un inverse a droite et a gauche. O

Définition 2.2.12. Soit G un site et X un objet de &. On considere la catégorie X dont les objets sont
les morphismes f : Y — X dans & et un morphisme entre deux objets f:Y — X et f/: Y/ — X est un

morphisme ¢ (dans &) tel que le diagramme
y — 2 L,y

\ / (2.1)

commute.

Lemme 2.2.13. Soit G un site et X un objet de S. Le foncteur d’oubli
Oubli: X - &

(qui envoie [ :Y — X surY et le diagramme (2.1) sur ¢ : Y — Y') permet de munir X d’une structure
de 6-CFG.
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Exemple 2.2.14. Soit M une variété différentielle. On définit la catégorie M dont les objets sont les
applications lisses f : U — M ou U est un objet du site Diff et dont les morphismes entre f : U — M et
g:V — M sont les applications ¢ : U — V telles que le diagramme

ULM

[

soit commutatif. Le foncteur F': M — Diff qui a f : U — M associe U et envoie le diagramme précédent

sur 'application ¢ : U — V confere a M une structure de Diff-catégorie fibrée en groupoides.

Une construction que nous utiliserons beaucoup par la suite est celle qui permet de construire une

CFG a partir d’'un groupoide.
Définition 2.2.15. Soit & un site et
t .
Gl Xs,tGl ﬂ> Gl :5; GO L> G1 *’L> G1

un groupoide avec G1, Gg € 0b(&) et des morphismes (s, ¢, m,u,i) des morphismes dans &. On défini la
catégorie [G1 =3 Go]°F'¢ de la fagon suivante
e les objets au dessus de S € & sont les morphismes f : S — Gy,

e un morphisme au dessus de o : S — S’ entre [ : S — Gy et [/ : S — Gy vérifiants f = f/ o« est

S /gf\} G1
X\f%

S ——— Gy

la donnée de

tel que les deux sous-diagrammes

s—* L s ¢ el
\ SJ/ X‘ , lt
Go s — T L aq

soient commutatifs.
Le morphisme identité de f : S — Gy est le morphisme wo f : S — Gj.
La composition se définit a I'aide de 'application m de la fagon suivante. Si on consideére une paire de

morphismes composables, c’est a dire un diagramme
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telque sogp=f,s0¢' =f,top=foaettod = f"oa alors
togp=foa=s0¢ oa

et on peut donc composer ¢ et ¢’ o a dans G1. On pose alors ¢’ o ¢ == m(¢p, ¢’ o ).

Lemme 2.2.16. Le foncteur d’oubli
Oubli : [G1 = Go]“FY - &

(qui envoie f : S — Gp sur S et a sur lui méme en oubliant la commutativité des diagrammes de la
définition précédente) confere a [G1 = Go]F'C une structure de catégorie fibrée en groupoides.
Définition 2.2.17. Une 2-categorie € est la donnée

e d’une classe d’objets 0b(€),

e pour chaque paire d’objets X,Y € 0b(€) d’une catégorie Home(X,Y") dont les objets f : X — YV
seront appelés 1-morphismes et les morphismes a : f — g entre deuxobjets f: X - Yetg: X - Y

seront appelés les 2-morphismes et notés

et on appelle composition verticale la composition 3 o, « : de deux 2-morphismes a : F — F’ et
B:F — F",

e pour chaque triplet d’objets X, Y et Z € ob(€) d’un foncteur
(0,0p) : Home (Y, Z) x Home(X,Y) — Homg (X, Z)

et on appellera composition F o G 'image de F' € Home(Y, Z) et G € Home (X, Y') par ce foncteur

et composition horizontale 8 oy a 'image de o : F' — G et §: G — H par ce foncteur.

Et ces données doivent satisfaire les propriétés suivantes :

e la classe 0b(€) muni des 1-morphismes et de leur composition forme une catégorie,

e la composition horizontale de 2-morphismes est associative,

o le 2-morphisme identité Idiq, est un neutre pour la composition horizontale.
Définition 2.2.18. Soit & un site. Un morphisme f entre deux catégories fibrées en groupoides mx :
X —> G et my: N — G est un foncteur F : X — DN entre les catégories sous-jacentes tel que mor 0 F' = 7x.

Etant donné deux morphismes de catégories fibrées en groupoides F, G : X — 9, une transformation
naturelle entre deux morphismes de CFGs ¢ : F = G est une transformation naturelle ¢ de F' a G telle
que la composition 7y o ¢ soit la transformation identité de mx.

On note HOM(%,9)) la catégorie dont les objets sont les morphismes entre les CFGs X et 9) et dont

les morphismes sont les transformations naturelles entre morphismes de CFGs.
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Exemple 2.2.19. La catégorie Groupoides des groupoides est une 2-catégorie dont les objets sont les
groupoides, les 1-morphismes sont les foncteurs entre groupoides et les 2-morphismes sont les transfor-

mations naturelles.

Lemme 2.2.20. L’ensemble des catégories fibrées en groupoides au dessus d’'un site & muni des mor-
phismes et des 2-morphismes forme une 2-catégorie, notée Gtt. De plus, pour toute paire de catégories

fibrées en groupoides X, M, I'ensemble Homgw (X, M) est un groupoide.

Définition 2.2.21. Soient X, ) et 3 trois G-catégories fibrées en groupoides. Soient f : ) — X et
g : 3 — X deux morphismes de CFGs. Le produit fibré ) x x 3 est la catégorie fibrée en groupoides dont
e les objets sont les triplets (Y, Z,¢) ou Y € 0b(Q)), Z € ob(3) et ¢ : f(Y) — g(Z) est un isomorphisme

au dessus de l'identité de &,
e les morphismes entre (Y, Z, ¢) et (Y',Z',¢') sont les couples de morphismes F : f(Y) — f(Y’) et

G :9(Z) — g(Z') au dessus du méme morphisme dans & tels que le diagramme

FY) == J(Y)

L

9(Z) —= g(2)
soit commutatif.

Proposition 2.2.22. Soit X et Y deux objets d’'un site S. On a une équivalence entre les catégories
HOM(X,Y) et Homg(X,Y).

Cette proposition est d’un intérét fondamental pour ramener ’étude des morphismes entre CFGs a
I’étude des morphismes entre objets classiques. En particulier, on peut parler de propriétés de morphismes

entre CFGs en termes de propriétés sur les objets, sous certaines conditions.

Définition 2.2.23. Sur un site &, une propriété P sur les morphismes de S est
o préservée par changement de base si pour tout morphisme f : X — Y ayant la propriété P et tout
morphisme Y/ — Y, le morphisme Y’ xy X — Y’ & la propriété P,
e locale si pour tout morphisme f : X — Y et pour tout recouvrement {Y; — Y} tel que les

morphismes f; : X Xy Y; — Y; aient la propriété P alors le morphisme f a la propriété P.

Proposition 2.2.24. Au dessus du site Sch (avec la topologie étale), les propriétés suivantes sont pré-
servées par changement de base et sont locales : lisse, étale, séparé, quasi-séparé, propre, plat, localement
de type fini. Au dessus du site Anc (avec la topologie usuelle), ’holomorphie est une propriété locale et

préservée par changement de base.

2.2.3 Pré-champs et champs

On va, dans un premier temps, donner une définition générale des pré-champs et des champs (essen-
tiellement tirée de [100]), puis, on donnera une définition plus pratique en spécifiant un site géométrique
(RAng, Sceb, Diff, ...) au dessus duquel on se placera. Le lecteur adepte de 'apprentissage inductif pourra
consulter les définitions dans ’ordre inverse.

Commencgons par donner une idée heuristique des pré-champs et des champs.
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Slogans. Soit © un site et 7 : X — & une CFG.
o m:X — G est un pré-champ si on peut recoller les objets,
e 7m:X — G est un champ si on peut recoller les objets et les morphismes.
Voici une fagon de formaliser ceci. Soient U € 0b(S) et {U; — U} un recouvrement. Pour tout n-uplet

d’indices 41, - - , iy, on notera Uy, ... ;. le produit fibré U;, xy --- xy U;,. On notera également prj, ... ;.

la projection de U, ... ;, sur U, xy -+ xp Uj, .

sin

Définition 2.2.25. Soient S un site, U € 0b(&), {U; — U} un recouvrement et 7 : X — & une CFG. Un

objet avec une donnée de descente est la donnée d’une collection d’objets &; € X(U;) et d’isomorphismes
bij ipTikfj — pr3é;
dans X(U;;) qui satisfont la condition de cocycle
Pris ik = Pria dij 0 pri g Gk s pri&e — pri&
Un morphisme entre deux objets avec des données de descente (&;, ¢i;) et (1;,1i;) est la donnée d’une

collection de morphismes «; : & — 7; € X(U;) tels que les diagrammes

*
pry g
% 2 74 *
pr2§j — Pran;

‘bijl ld)ij

ES £
pri&1 —— prami
pri oy
commutent.

On définit ainsi pour chaque objet U € & et recouvrement U := {U; — U} une catégorie, notée X(U),
dont les objets sont les objets avec une donnée de descente (&;, ¢;;) et les fleches sont les morphismes

définis entre eux.

Remarque. Cette catégorie ne dépend pas du choix des produits fibrés U;; et Ujj, dans le sens ot pour

deux choix différents, les catégories obtenues sont équivalentes.

On va maintenant construire un foncteur F' : X(U) — X(U). Pour tout £ € X(U), on construit un
objet avec une donnée de descente F'(£) sur un recouvrement U = {f; : U; — U} de la fagon suivante.

Les objets {&;} sont les pullbacks f*¢ et les isomorphismes
Gij P@f;f — prifié

sont les isomorphismes qui viennent du fait que pri f*§ et pr3 f#¢ sont des pullbacks de £ sur U;;. De
plus, si Pon a une fleche o : € — 1 dans X(U), on obtient des fleches fFfa : f¥¢ — f#n qui fournissent

des fleches entre les objets avec donnée de descente définis a partir de £ et de 7.

Remarque. La définition est plus agréable si 'on a le diagramme suivant sous les yeux
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Uijk pr2,3 Uj
PTV /
pri,s
U J U;
Ui — Uk

e

Définition 2.2.26. Un objet avec une donnée de descente (&;, ¢;;) dans X({U; — U}) est dit effectif s'il
est isomorphe & l'image d’un objet de X(U) par F.

9

On dira plus souvent que la donnée de descente est effective.
Un objet avec une donnée de descente (&;, ¢;;) dans X(U), ou U = {f; : U; — U}, est effective si il
existe un objet £ € X(U) et des fleches & — & au dessus de f; : U; — U tels que pour tout ¢ et tout j, les

diagrammes
pr3&; L pri&i
| |
& &
/
£
commutent.

On peut donc voir assez facilement qu'un pré-champ 7 : X — & est un champ si, et seulement si, tous
les objets avec une donnée de descente sont effectifs.
Puisque 'on travaillera souvent & équivalence prés de CFG (ou plutét & Morita équivalence prés de

groupoides, voir la théoréme 2.3.8), il reste & voir que cette définition est stable sous cette relation.

Définition 2.2.27. Soit S un site. Une CFG 7 : X — & est un

e pré-champ si pour tout objet U € ob(&), pour tout objets £ et n € X(U) et tout recouvrement
{U; — U}, lapplication
Homy 1) (€, 1) — Homy ) (F(§), F(n))
est une bijection (autrement dit, F' est un foncteur pleinement fidele).

e champ si pour tout objet U € 0b(&) et tout recouvrement {U; — U}, le foncteur F': X(U) — X(U)

est une équivalence.

Proposition 2.2.28 ([100, Proposition 4.12]). Soient S un site, 7 : X - & et w : Y — & deux CFGs
ainsi que F : X — ) une équivalence de CFGs. Alors, pour tout objet U € ob(&) et tout recouvrement
U ={U; - U}, on a un foncteur Fy : X(U) — YU) définit par

Fy((&i, ¢i5)) = (F(&), F(9i5)),  Fuloi) = F(a;)
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et on a que : X — & est un pré-champ (resp. champ) si, et seulement si, 7 :9) — & est un pré-champ

(resp. champ).

Nous donnons maintenant une caractérisation équivalente des (pré)-champs sur les sites géométriques
qui nous intéresserons par la suite.
Remarquons d’abord que sur les sites 2Anc, Gebh ou Diff, les recouvrements {f; : U; — U} sont des

immersions ouvertes et on peut alors écrire U| v, pour désigner fru
Définition 2.2.29. Soit G = Ang, Gch ou Diff. Un pré-champ est une S-CFG 7 : X — & satisfaisant
pour tout U € 0b(&) et tout recouvrement ouvert {U;} de U :

e (Recollement de morphismes) soient deux objets X,Y € X(U) et une famille (¢; : X|y, — Ylv,)

d’applications telle que ¢;|v,~u; = @jlv,~v,, il existe un unique morphisme ¢ € Homy ) (X,Y)

U; = ¢; pour tout 7.
Un champ (au dessus de &) est un pré-champ satisfaisant :

o (Recollement d’objets) Soient X; € X(U;) pour tout i et ¢;;

satisfaisant la condition de cocycle

L Xi|UmUj dans X(U; nUj)

Gij © Pjk = Pij
pour tout triplet (i,7,k), alors il existe un unique objet X € X(U) avec des isomorphismes ¢; :
X‘U@ i Xl tels que ¢ij o gf)j = Qsz

L’axiome de recollement des objets est appelée donnée de descente et lorsque celle-ci est vérifiée pour

une CFG 7 : X — &, on dit que la descente est effective.

ne permet pas de différencier les inclusions

/\
\/

Mais, si 'on note fiji,i; : UinU; nUy <= U;nUj (resp. fijr,i : UinU; nUy < U;), on a les transformations

Remarque. Notons que la notation X |y,

1in

Ui n

naturelles suivantes :
ey * %
Pijk,iji: fijk,ijfz’j,i - fijk,i'
et on devrait alors écrire les conditions de cocycle en tenant compte de ces transformations (voir [43,

Remark 1.2.1] pour un calcul complet).

Exemple 2.2.30. Soit G un groupe de Lie. On définit la catégorie BG dont les objets sont des G-fibrés
principaux P — U (dans le site Diff) et dont les morphismes (P — U) — (P’ — V) sont les diagrammes

cartésiens

T

.

S—
<<

—_
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tels que f soit G-équivariant. Le foncteur d’oubli
m : BG — Diff, (P—->U)»U

confere & BG une structure de champ que 'on appelle champ classifiant de G.

Lemme 2.2.31. Soit X un objet d’un site &. Alors la CFG
Oubli: X - &

est un champ.
Lemme 2.2.32. La CFG [G1 = Go]|“FY associée a un groupoide Gy = Gy est un pré-champ.

Lemme 2.2.33 (Lemme de YONEDA). Soit X un champ au dessus d’un site & et X € ob(&). Alors, le

foncteur
HOM(X, X) — X(X)

est une équivalence de catégories.

Exemple 2.2.34. On se place sur le site Diff. Soit G un groupe de Lie et M € ob(Diff). Par le lemme
de Yoneda, on a une bijection entre le groupoide HOM(M, BG) et le groupoide BG(M) des G-fibrés

principaux sur M.

Théoréme 2.2.35. Soient & un site et X, Q) et 3 trois champs au dessus de &. Soient F' : Q) — X et
G : 3 — X deux morphismes entre ces champs. Le produit fibré ) xx 3 existe et est défini pour tout
X € 0b(6) par

Y xx3(X) ={(f.9,0)|f: X >,9: X >3, ¢:Fof~Gog}

2.2.4 Champification

Il arrive que la donnée de descente d’un pré-champ X ne soit pas effective, autrement dit X n’est pas
un champ. Il existe une construction qui permet de champifier une CFG, c’est a dire de construire une

autre CFG équivalente, a un 2-morphisme pres, a la premiere et qui respecte les conditions d’un champ.

Définition 2.2.36. Soit X une catégorie fibrée en groupoides au dessus d’un site &. Une champification
de Xy est un champ 7 : X — & avec un morphisme de CFG p : Xy — X tel que pour tout champ
), le foncteur Hom(%,2)) — Hom(Xy,%)) induit par la pré-composition par p soit une équivalence de

catégories.

Théoréme 2.2.37. Soit Xy une catégorie fibrée en groupoides au dessus d’un site & et soient X et X’
deux champifications de Xy données par des morphismes F : Xy — X et G : Xo — X'. Alors il existe un

isomorphisme (unique d un 2-isomorphisme prés) f : X — X' et un 2-isomorphisme f o F =G,

La construction du foncteur de champification est un peu lourde et la preuve peu instructive. L’idée de
preuve est assez similaire a la faisceautisation d’un pré-faisceau. Etant donné un pré-champ 7 : X — &,

on construit une catégorie X’ dont les objets sont les données de descente. Plus précisément, soit S € &,
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on définit la catégorie X" dont les objets sont les couples (U, R) ould = {¢; : U; — U} est un recouvrement
de U € 0b(6) et R = ({X;},{¢i;}) est une donné de descente relative a U. Si

U, R) = ({6 : Us = U}, ({Xi}, {dig}) et (V,5) = ({¢i : Vi = V], ({Ya} {¢hig})

sont deux tels objets, on définit les morphismes Homzx ((U, R), (V, S)) entre eux comme ’ensemble des

couples (f,{ai;}) ou f:U —V et oy : Xi|UixVVj — Yj telles que pour tout ¢, 7, k,{, le diagramme

Xilw — Yily

‘lbijJ/ J{"/’kl

Xilw —a7 Yilw

Qi

commute, ot W = (U; xy Uj) xv (Vi xv V).

On montre ensuite que X’ est bien un champ et que ’on a un isomorphisme naturel ¥ ~ X’.

Dans certains cas particuliers, par exemple au dessus du site 2qnc ou &b, le foncteur de champification
peut étre construit en termes de torseurs (voir la these [29] de C. FROMENTEAU pour le cas ng).

Définition 2.2.38. Si G; 3 Gq est un groupoide, on note [G; =3 Gy] la champification de la CFG

associée.

Définition 2.2.39. Soit 7 : X — & un champ. Un atlas de X est un groupoide G; =3 Gy tel que
[G1 = Gp] soit équivalent & X.
Exemples 2.2.40.

o (Champ classifiant d’un groupe de Lie) Dans I'théoreme 2.2.30 le champ BG est équivalent au
champ [G x pt 3 pt].

e (Champ quotient) On se place au dessus du site Diff (voir [43, Example 2.5] pour le cas ou le site
est Top). Soit G un groupe agissant sur une variété différentiable M. On définit le champ quotient
[M/G] = [GxM =3 M] (confere théoreme 2.2.8) dont les objets sont les G-fibrés principaux P — U,
avec U € ob(Diff) munis d’une application G-équivariante f : P — M et dont les morphismes

(P—->U,f)— (P - V,f) sont les diagrammes cartésiens

P25 P

|

U——V

tels que « soit G-équivariante et vérifie f/ o a = f. De la méme fagon, le foncteur oubli
™ : [M/G] — Dijf, (P—-Uf)—U

confere & [M/G] une structure de champ.

Exemple des tores 2.F. Notons X, ’espace total de la famille universelle du tore, c’est-a-dire &), =
(H,, x C")/G,. Le champ
[Xn =3 Ha]
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est la catégorie dont les objets sont les applications holomorphes f : S — H, ou S est un espace C-
analytique et les morphismes entre f : S — H, et f' : S — H, sont les applications holomorphes
progp =f

pog =foa
En particulier, en utilisant les produits fibrés, on peut voir les objets de ce champ comme les familles

a: S — S telles qu’il existe ¢ : S — (H,, x C")/G,, vérifiant :

de tores au dessus d’un espace C-analytique S € RUnc :

S Xt H,p1 Xn > A

| lpl

s —L s,

et les morphismes comme les applications entre familles telles que la composition de pullback soit respec-

tée, c’est-a-dire

X —— S X fr,p Xn S Xa,50py (8" Xa, Xn) —— 8" Xpr a0, py Xn —— Ay
lpl l l l lpl
R S a s ! 1"

f n
Remarques.

e La propriété universelle de la famille X,, — H,, implique que cette catégorie est équivalente a la
catégorie formée de toutes les familles de T,, et dont les morphismes sont les applications entre
elles. C’est cette notion que les champs de Teichmiiller et de modules de Riemann vont essayer de

généraliser dans le cas ou il n’existe pas de famille universelle par exemple.
e La remarque précédente reste valide si ’on change le site 2In¢ pour le site Diff.

e De la méme fagon, on peut construire le champ associé au groupoide de Riemann
[SLopn(Z) x X, = Ha]

et obtenir les résultats analogues.

2.3 Structures algébriques et analytiques sur les champs

Nous allons maintenant spécifier les deux sites principaux sur lesquels nous allons travailler pour

pouvoir munir les champs de structures analytiques/algébriques.

2.3.1 Champs algébriques et champs d’Artin

On se place maintenant sur le site Schg, munit de la topologie étale (les résultats sont aussi valables
pour la topologie fppf). Rappelons que un recouvrement étale d’un schéma X est la donnée d’une famille
de morphismes f; : U; — X entre schémas tels que les f; soient des morphismes étales (morphismes plats

et non-ramifiés).

Définition 2.3.1. Soit S un schéma. Un espace algébrique au dessus de S est un faisceau d’ensembles
X : (6ch/S)°P — Set tel que
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o il existe un schéma X € Gchy, et un morphisme X — X surjectif et étale,
e la diagonale A : X — X x X est représentable.

Puisque les espaces algébriques ne sont pas des objets centraux dans cette these, nous laissons le

lecteur se référer a [57] pour plus de détails sur ces espaces et les notions délicates qui leur sont reliées.

Définition 2.3.2. Soit f : X — 2) un morphisme entre catégories fibrées en groupoides au dessus du site
Sch. Le morphisme f est dit représentable si pour tout objet X de &ch et pour tout morphisme entre
catégorie fibrée en groupoides ¢ : X — 92) il existe un espace algébrique M tel que le produit fibré X x g X
soit équivalent a la catégorie M.
Définition 2.3.3. Un champ X au dessus de Sc¢h est un champ d’Artin si

e sa diagonale X — X x X est représentable, séparée et quasi-compacte,

e il existe un objet U de Gch et un morphisme surjectif et lisse U — X.

Exemples 2.3.4.
e Un groupe algébrique lisse G agissant sur un schéma séparé X, alors [X/G] est un champ d’Artin.

e BG avec G lisse est un champ d’Artin.

Proposition 2.3.5. Soit X un champ d’Artin. Alors X admet un atlas, c’est-d-dire qu’il existe des espaces
algébriques R et U et des morphismes (s,t, m,u,1) de Sch avec s et t lisses tels que le groupoide R :5; U
t

soit un atlas de X.

2.3.2 Groupoides analytiques, champs analytiques

On se place désormais au dessus du site 2n¢ des espaces C-analytiques muni de la topologie usuelle

des recouvrements par des ouverts analytiques.

Définition 2.3.6. Un groupoide analytique est un groupoide
X1 %o X1 B X1 3 X0 5 X 5 X
t
avec X1 et Xy des espaces C-analytiques séparés et dont les cinq applications s,t,m,u et ¢ sont holo-

morphes et lisses.

Définition 2.3.7. Soient X = X; 3 Xy et Y = Y7 3 Y deux groupoides analytiques. Un morphisme
de groupoides analytiques entre X et Y est un couple d’applications holomorphes f : Xo — Hj et

F Y7 — Y telles que les diagrammes suivants

X1 L> Y1 X1 L Yi
S
X() % YQ X() % YO

commutent.
De plus, si f est surjective et si les diagrammes sont cartésiens alors (f, F') est appelé morphisme de
Morita
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Définition 2.3.8. Deux groupoides X = X7 3 Xg et Y = Y; 3 Y) sont dits Morita équivalents si il
existe un troisieme groupoide Z = Z; 3 Zy muni de deux morphismes de Morita

fx 2o — Xo ot 20— Yo

inzl—>X1 Fylzl—>Yi

L’intérét de cette équivalence est qu’elle passe en une équivalence entre les champs associés :

Proposition 2.3.9. 51 X = X; 3 Xy et Y = Y1 3 Y, sont deux groupoides Morita équivalents alors,

les champs [ X1 3 Xo] et [Y1 =3 Yo sont catégoriquement équivalents.

Définition 2.3.10. Soit X un champ au dessus de Anc. On dit que X est un champ analytique s’il existe

un espace C-analytique X et un morphisme ¢ : X — X représentable, surjectif et lisse.

Proposition 2.3.11. Soit X un champ analytique. Alors, il existe un groupoide analytique X1 =3 X tel

que le champ associé soit équivalent a X.

Démonstration. Par définition, il existe un espace C-analytique X( et un morphisme ¢ : Xo — X repré-
sentable, surjectif et lisse. Par représentabilité du morphisme, il existe un espace C-analytique X; tel que
Xy xx Xy~ X,;. Notons p; : X; ~ Xy xx Xy — X, 7 = 1,2, la projection sur le i-eme facteur.

On définit maintenant les fleches de la fagon suivante
e On pose s:pi(Idx,) et t = p2(Idx, ).

e L’application u se définit simplement par
wiXo =Xy, fo (ff 1)
e En identifiant X xx X, xx X, avec (X xx X) xx X, on a une équivalence naturelle de catégorie

(X xx Xg) xx Xy — X, Xp1,Xop2 X 15

((f,9:0), h,¥) — ((f.9:9), (9, h, ¥))
On définit alors m par

m: Xy Xp, X,

Xl 3&0 X%Ko X%Xo"&o X}.‘Xo :Kl
((f,9:9), (g, h,¥0)) = (f, h,9p 0 @)

e Finalement, on définit ’application ¢ par

iigo XXK02X1 —’Xo X%Kozzp
(f,9,90) — (9, f,67")

On vérifie ensuite que X; 3 X définit bien un groupoide dont le champ (analytique) associé est équi-
valent a X. O

On aura 'utilité des notions de sous-champs ouverts/fermés.
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Définition 2.3.12. Soit X — Anc un champ analytique. Un sous-champ ouvert X’ (resp. fermé) de X
est une sous-catégorie strictement pleine ! telle que telle que ¥’ — 2nc soit un champ analytique et telle

que X’ — X soit une immersion ouverte (resp. fermée).
Ainsi que de la notion d’espace topologique sous-jacent & un champ analytique ou algébrique.

Définition 2.3.13. L’espace topologique associé & un groupoide analytique X; =3 X (resp. algébrique)
est ’espace topologique obtenu comme quotient de X par la relation d’équivalence induite par X;.
La notion de composante connexe d’un groupoide fera donc référence a la composante connexe de

I’espace topologique associé.

Evidemment, deux groupoides Morita équivalents ont des espaces topologiques associés sont homéo-

morphes.

2.4 Champ de Teichmiiller

Revoyons un peu plus en détail la construction du champ de Teichmiiller. Reprenons les notations
du début du chapitre : X est une variété différentiable de dimension 2n, connexe et orientée. On note
Z(X) Vensemble des structures complexes sur X. Si V est un ouvert de Z(X) on définit le champ de

Teichmiiller 7y (X) de X restreint & V' comme étant la catégorie dont

o les objets sont les déformations marquées de X au sens de la théoreme 1.1.7 du chapitre précédent
telles que les structures complexes sur chacune des fibres soient encodées par un élément J €
V', on appellera ces déformations des V-familles de X. C’est & dire des morphismes lisses 7 :
X — B entre des objets du site 2Anc tels que les fibres soient des variétés complexes compactes
toutes difféomorphes & X%, On supposera de plus que X — B, avec X et B vus comme espaces
réels analytiques, est difféomorphe (donné par le marquage) & un fibré de fibre X % et de groupe
structural Diff’(X),

e les morphismes sont les diagrammes cartésiens
X — X
]

B -1 .,B

ol les isomorphismes f*X ~ X’ induisent un Diff° (X )-isomorphisme de la structure de fibré.
Lemme 2.4.1. Pour tout ouvert V < Z(X), la catégorie Ty (X) munie du foncteur d’oubli
Oubli: Ty (X) — AUnc

est une CFG.

Démonstration. On vérifie 'existence de pullbacks et leur unicité a unique isomorphisme pres.

1. c’est-a-dire, Homy/ (X,Y) = Homx (X,Y) pour tout couple d’objets X,Y € ob(X’) et si un objet Y de X est isomorphe
4 un objet X dans X’ alors Y € ob(X')
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2.4. Champ de Teichmiiller

Soit ™ : X — B une V-famille et f : B” — B un morphisme entre espaces C-analytiques. On peut
construire la famille pullback f*X — B’ et on obtient I’existence de pullbacks. L’unicité des pullbacks
est essentiellement donné par la propriété universelle du produit fibré. Considérons trois V-familles 7; :

X — By, i=1,2,3 ainsi que des applications f: Bo — By, g: B3 — By et h: By — Bs qui vérifient
e X, est biholomorphe & f*X7,
e X3 soit biholomorphe a g* X7,
ect f=goh.

On résume la situation dans le diagramme suivant :

XQ XB
\ ; /
T2 1 T,

T

3

By h —— B3

TN T

By

Par propriété du produit fibré, on a un biholomorphisme naturel entre h* X3 ~ h*(g* X)) et (goh)*X;. Par
hypothéses, on a (goh)*X; = f*X; qui est biholomorphe & X». Finalement on a donc un biholomorphisme

entre h* X3 et Xo. L’unicité de cette application est donné par la propriété universelle du produit fibré. [

Proposition 2.4.2. Pour tout ouvert V.c Z(X), la catégorie Ty (X) muni du foncteur d’oubli
Oubli : Ty (X) — Ang

est un champ.

Démonstration. On doit maintenant montrer que la CFG Oubli : Ty (X) — fnc vérifie le recollement
des morphismes ainsi que la donnée de descente.

Soient 71 : X1 — B et w3 : Xy — B deux V-familles, un recouvrement {U;} de B ainsi qu’une famille
d’application ¢; : Xl‘ﬂl—l(Ui) — Xg‘ﬂ;l(Ui) telles que ¢; et ¢; soient égales sur l'intersection m; * (U; n U;).
Cette famille d’application se recolle évidemment pour donner un biholomorphisme entre X; et Xs.

Soit m; : X; — U; une collection de V-familles et un cocycle ¢;; donnant des isomorphismes entre
7 N U; nU;) et 7r;1(U¢ N Uj). On peut alors construire la V-famille X — S donnée par X := (| |, X;)/ ~
avec ~ la relation d’équivalence donnée par le cocycle {f;;}. On conclut que la donnée de descente est

effective et donc que Ty (X) — Ang est un champ comme annoncé. O

Comme nous 'avons vu dans ’exemple de ’espace de modules de Riemann des tores de dimensions
n = 2, il existe des variétés pour lesquelles cet espace ou 'espace de Teichmiiller n’admettent pas de
structure d’espace C-analytique. Cependant, sous des hypotheses sur les groupes d’automorphismes des
structures complexes de la variété étudiée, le champ de Teichmiiller admet une structure de champ
analytique. Autrement dit, il existe un groupoide analytique G; =2 Gy, avec Gy et Gy des espaces C-
analytiques (et dont les fleches sont des applications holomorphes) tel que le champ de Teichmiiller soit

équivalent au champ [G7 =3 Gp]. Plus précisément,
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Théoréme 2.4.3 (MEERSSEMAN [74, Theorem 2.13]). Soit X une variété différentiable orientée compacte
de dimension paire et V un ouvert de Z(X). Supposons qu’il existe n € N tel que pour toute structure
complexe J € V, la dimension du groupe d’automorphisme de la variété complexe (X, J) soit bornée par

n. Alors, Uespace de Teichmiiller Ty (X) admet une structure de champ analytique.

La structure de champ analytique (sous I’hypothése du théoréme précédent) du champ de Teichmiiller
est donnée dans [74] par la construction d’un atlas donné par le groupoide d’holonomie généralisé. Méme
si nous ne reviendrons pas sur les détails de la construction de cet atlas, la sous-section qui suit reprend

les principales idées.

2.4.1 Construction de ’atlas

La principale difficulté de la construction d’'un atlas pour le champ de Teichmiiller réside dans les
sauts possibles de la fonction h%(J) = dim H°((X,J),©0;) ot O est le faisceau des germes de champs
de vecteurs holomorphes sur (X, J). Le premiére étape de construction de cet atlas est de se placer dans
le cas ou cette fonction est constante en utilisant la notion d’homotopie entre déformations. Dans ce
contexte, on construit un atlas en recollant les espaces de Kuranishi par les "bons morphismes". Dans le
cas général, on stratifie Z(X) en sous-espaces sur lesquelles h°(J) est constante et on recolle ces différentes
strates en épaississant les strates de petite dimension afin d’obtenir des strates de méme dimension que
I’on recollera pour former un atlas du champ recherché.

On voit déja assez clairement dans cette explication grossiére 'intervention de 'hypothese de 'exis-
tence d'une borne & la fonction h° sur V.

Nous proposons maintenant de donner une idée de la construction du champ de Teichmiiller 7y (X)
d’une variété X sous ’hypothése que Aut' (X, .J) := Aut(X) n Diff°(X) soient des groupes triviaux pour
tout J € V. Remarquons que cette condition implique immédiatement h°(J) = 0 pour tout J € V.
L’avantage de ce cadre tient au fait que dans ce cas l'action de Diﬁo(l’) sur V est libre et définit un
feuilletage sur V. De plus, les espaces de Kuranishi fournissent des sections localement transverses a ce
feuilletage.

Soit V un ouvert de Z(X). Prenons U = {U,} un recouvrement de V par des ouverts U, tels que chaque
U, soit analytiquement isomorphe a un produit K, x H, ou K, est 'espace de Kuranishi d’un point J, €
U, et H est un complémentaire de H°((X, J,),0,) (avec O, = 0 ) dans A% (T10(X, .J,)) (voir [74]
pour plus de détails). On définit alors le groupoide de Teichmiiller de X (restreint & V') comme la catégorie
dont les objets sont les points de | | K, et les morphismes sont les compositions d’applications ¢4 g :
Ko nKgc K, - Kgn K, © Kg uniquement définies comme applications vérifiant la commutativité

deu diagramme

Uy nUs —4 5 Uy nUs

| |

KonKsc Ko 22" Kyn Ko c Kg

L. MEERSSEMAN montre [74, Proposition 7.5] que ce groupoide est analytique et méme étale et définit
un atlas du champ de Teichmiiller 7y (X).

Passons maintenant au cas ol la fonction h° n’est pas constante sur V.
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Remarque. Le probléme de saut de la fonction h° est du a Papparition de fibres biholomorphes (plus
précisément, si h° est non-constante, on peut stratifier ’espace de Kuranishi par la fonction hA'. On
obtient alors que la restriction de la famille de Kuranishi & une strate non-maximale est une famille
localement triviale. Pour plus de détails, le lecteur pourra consulter [72]) le long d’un espace C-analytique
de dimension strictement positive dans ’espace de Kuranishi et est la raison pour laquelle 'espace de
Kuranishi n’est pas toujours une section localement transverse au feuilletage induit par ’action de Diff°

sur Zg.

Définition 2.4.4. Soient J; et Jo deux points dans Z(X). Une homotopie entre J; et Jy est la donnée

d’un chemin lisse I dans Z(X) d’extrémités J; et Jo sur lequel la fonction h° est constante.

On peut montrer [74, Proposition 5.6] que pour chaque composante connexe de V, il n’y a qu'un
nombre dénombrable de classes d’homotopie de structures complexes. Cette notion permet alors de
construire un feuilletage de V. Il faudrait encore raffiner un peut ce feuilletage en découpant chaque
feuille en sous-espaces sur lesquels le complémentaire H utilisé précédemment peut étre le méme pour
chaque espace de Kuranishi des points de cette feuille. L’idée est ensuite de construire comme précédem-

ment le groupoide d’holonomie associé a chaque feuille et de recoller ensuite ces groupoides.

Exemple des tores 2.G. Le champ
[X'IL :; HTL]

est le champ de Teichmiiller du tore de dimension n (voir [74]).

On peut aussi montrer que le quotient géométrique de ce quotient est isomorphe au quotient SLo, (R)/SL,, (C)

2.5 Espace de modules de Riemann

De la méme maniére que 'on a construit le champ de Teichmiiller, pour tout ouvert V < Z(X), on
peut construire le champ des modules de Riemann My (X) d’une variété X. Comme précédemment, soit
X est une variété différentiable de dimension 2n, connexe et orientée. On définit le champ de modules de

Riemann My (X) de X restreint a V' comme étant la catégorie dont
o les objets sont les V-familles de X.
e les morphismes entre V-familles sont les diagrammes cartésiens
X — X
L

B —1.pB

Lemme 2.5.1. Pour tout ouvert V < Z(X), la catégorie My (X) muni du foncteur d’oubli

Oubli : ./\/lv(X) — Anc

est un champ.

Théoréme 2.5.2 (MEERSSEMAN [74, Theorem 2.14]). Soit X une variété compacte compleze et V

Z(X). Supposons qu’il existe n € N tel que pour toute structure complexe J € V, la dimension du groupe
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d’automorphisme de la variété complexze (X, J) associée soit bornée par n. Alors, l'espace de modules de

Riemann M(X) admet une structure de champ analytique.

Remarque. Pour un exemple ot la dimension des groupes d’automorphismes n’est pas bornée, le lecteur

pourra consulter le cas des surfaces de Hirzebruch [74, p. 908].

La construction de I'atlas est sensiblement la méme que pour le champ analytique de Teichmiiller.

Exemple des tores 2.H. Le champ

est le champ de modules de Riemann du tore de dimension n (voir [74]).
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INTERLUDE

A COHESION entre les deux premiers chapitres et les deux prochains n’étant pas des plus apparentes,
L nous prenons le temps ici d’expliquer, comme cela & été brievement fait dans I'introduction, pourquoi
ce changement radical intervient.

L’objet de cette these est donc d’étudier les déformations de la structure complexe de la variété
quotient SLy(C)/T', ot T est un sous-groupe discret co-compact sans torsion, et en particulier trouver un
atlas pour le champ de Teichmiiller (ou au moins pour un sous-champ de celui-ci) de ces variétés. Les
travaux [31] de GHYS ont permis d’expliciter ’espace de Kuranishi de ces variétés et 'auteur montre que
pour déformer la structure complexe il suffit de déformer une certaine (G, X )-structure. Plus précisément,
il s’agit de la (SL2(C) x SLy(C), SLo(C))-structure que’admettent ces quotients. Cette structure, ainsi
que ces déformations, mérite que 'on s’y attarde, et c’est exactement ce que propose le chapitre suivant.

Nous verrons au cours de ce chapitre que le principe d’Ehresmann-Thurston donne une construction
pratique des déformations de cette (G, X)-structure au moyen de la déformation du morphisme d’holo-
nomie. Pour comprendre comment déformer ce morphisme, il est indispensable de s’intéresser & ’espace
dans lequel il vit. Cet espace est appelé variété de représentation (de T' dans SLa(C)) et est le sujet
principal du chapitre 4.

De plus, la détermination d’un groupoide analytique du champ de Teichmiiller présuppose, comme
nous 'avons évoqué précédemment, la connaissance des espaces de Kuranishi de SLo(C)/T et des variétés
obtenues par déformations de la structure complexe. Nous devons pour cela montrer que la famille de
structures complexes obtenues par déformation de ’holonomie de cette (G, X)-structure est compleéte
et cela nécessite que l'on regarde 'espace tangent a la variété de représentation qui s’identifie, par la
construction de WEYL, au groupe Z'(T',sl3(C),) des cocycles de I' & valeur dans sl2(C) (de T-module
structure induite par p). La variété des représentations n’étant pas lisse, nous aurons aussi besoin de
regarder les obstructions aux ordres supérieurs et il nous faudra donc considérer le second groupe de
cohomologie (de T" dans sl3(C)). Nous aurons aussi besoin d’outils d’algébre cohomologique pour conclure
a la complétude de cette famille et il est donc naturel de revenir sur cette théorie cohomologique dans le

méme chapitre que celui de la variété de représentation.
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CHAPITRE 3

STRUCTURES GEOMETRIQUES ET LEURS
DEFORMATIONS

ANS LE PROGRAMME ERLANGEN [56], F. KLEIN proposa que les géométries classiques soient définies
D par les propriétés d’un espace X invariant sous l'action transitive d’un groupe de Lie G. Motivé par
ces travaux, la notion de (G, X)-structures fut pour la premiére fois introduite par Charles Ehresmann
dans le texte « Sur les espaces localement homogenes »[27]. Méme si cette terminologie de (G, X )-structure
est cependant apparue plus tard dans les travaux de THURSTON, I'idée générale est la méme. Si on se
donne un objet géométrique M et un G-espace homogeéne X, la comparaison entre la géométrie locale de
M et celle de X sous l'action d’un sous groupe de G permet d’obtenir beaucoup d’informations sur M.
Plus précisément, une (G, X)-structure sur une variété M (de méme dimension que X) est la donnée
d’un atlas sur M a valeurs dans X dont les changements de cartes sont des restrictions d’éléments de G.
Dans ce contexte, si G agit sur X en préservant une structure géométrique, alors la donnée d’une (G, X)-
structure sur M fournit I’existence d’une structure géométrique sur M localement induite par celle sur
X. Remarquons que si X est une variété complexe et que G est un sous-groupe des biholomorphismes de
X, alors toute variété différentiable M munie d’une (G, X)-structure est automatiquement munie d’une
structure complexe.

De fagon équivalente, une (G, X )-structure sur une variété M est entierement déterminée par la donnée
d’une G-représentation hol du groupe fondamental de M, appelée holonomie, et d’une application dev
qui réalise un difféomorphisme local entre le revétement universel M de M et X qui est de plus hol-
équivariante, que 'on appelle application développante. Cette équivalence permet, dans bon nombre de

cas, d’apporter des éléments de réponse aux deux questions suivantes :

e Si M est une variété et X un G-espace homogene, peut-on trouver un espace, noté Def g x) (M),
dont chaque point correspond a la donnée d’une classe d’équivalence (pour la relation d’isotopie)
de (G, X)-structures sur M ?

e Sous quelles hypothéses une (G, X )-structure sur M permet-elle d’identifier M a un quotient de X
par un sous-groupe de G 7

Une premiére réponse partielle a la premiére question est apportée par le principe d’Ehresmann-

Thruston (voir la théoréme 3.2.1 ou [97]) qui affirme que si (dev,hol) est une paire développante, c’est-
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a~dire la donnée d’une application développante dev et d’un morphisme d’holonomie hol, alors tout
morphisme hol” suffisamment proche de hol est aussi I’holonomie d’une autre (G, X )-structure. De plus,
les deux (G, X)-structures sont isotopes si, et seulement si, ces deux morphismes sont conjugués par
un élément de G. On remarque alors que I'étude de l'espace Def (g x)(M) est largement relié, au moins
localement, & celle de la variété de caractéres Hom(wi (M), G)/G.

L’application développante dev, correspondant & une (G, X)-structure sur une variété M, donne de
bons renseignements sur la deuxiéme question. En particulier, lorsque X est simplement connexe, si dev
est un difféomorphisme (global) alors M est difféomorphe au quotient de X par I'image de son holonomie.
Dans ce cas, cette (G, X)-structure est dite compléte. Nous profiterons de ce chapitre pour énoncer les
résultats de THOLOZAN concernant la complétude des (G x G, G)-structures. Une question naturellement
reliée & la notion de complétude de la (G, X)-structure d’une variété M est celle d’admissibilité de I’ho-
lonomie, c’est-a-dire la propreté de ’action du groupe d’holonomie sur X. En effet, si ce groupe agit
librement et de facon totalement discontinue sur X alors on peut former le quotient et toujours sous ’hy-
pothese de simple connexité de X, on peut montrer que ce quotient s’identifie bien & M. En particulier,
lorsque I'on cherche & savoir si un morphisme suffisamment proche de I’holonomie d’une (G, X)-structure
compléte est encore 'holonomie d’'une (G, X)-structure compléte, un critére d’admissibilité peut per-
mettre de conclure. Pour aller dans ce sens, les contributions de GUERITAUD et KASSEL [50] et [42], qui
font suite au critére de propreté de KOBAYASHI et BENOIST, nous permettront de justifier pleinement
I’existence de cette these.

Signalons aussi que si X est une variété riemannienne G-homogene (G préserve la métrique rieman-
nienne), le théoréme de HOPF-RINOW assure que toutes les (G, X )-structures sur variétés compactes sont
complétes (voir [94, Proposition 1.2]).

Dans ce chapitre, nous reviendrons donc dans un premier temps sur les concepts et définitions inhérents
aux (G, X)-structures. Puis, nous aborderons la question de la déformation de 1’holonomie, celle de
complétude d’une telle structure géométrique et nous finirons par énoncer les résultats concernant les

criteres de propreté d’une action qui nous serons essentiels pour la suite.

3.1 (G, X)-Structures

Les principales références sous-jacentes aux notions élémentaires qui suivront est [97] et [10].

Commencgons par une observation qui donnera une idée de la généralisation souhaitée. Une variété est
un espace topologique localement modelé sur R™. La définition de localement modelé dépend du contexte
mais de fagon général, elle correspond a la donnée d’'un ensemble ¢ d’applications de recollement des
cartes locales de R™. Pour que cette notion soit exploitable, il faut que cet ensemble ¥ soit constitué

d’homéomorphismes locaux de R™ et qu’il satisfasse quelques propriétés élémentaires :

e ¢ doit étre stable par restriction. Si g € ¢4 alors la restriction de g a un ouvert de R™ contenu dans
le domaine de définition de g doit étre dans ¥,

e & doit étre stable par passage a I'inverse. Si g est dans ¢, alors il en est de méme pour g1,

e ¢ doit étre stable par composition. Soient g; et go deux éléments de ¥ tels que g1 o go soit bien

définit alors il doit appartenir a ¢,
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o étre dans & est une propriété locale. Si U := [ J, U, est un recouvrement d'un ouvert U et si
g : U — V est un homéomorphisme local tel que chacune de ses restrictions a U, soit dans ¢ pour

tout o € A alors g est aussi dans ¢.

Ces hypotheéses munissent ¢ d’une structure de pseudo-groupe. Une variété possédant une telle structure

est appelée une ¥-variété.

Exemples 3.1.1.

e Les variétés de classe C" (resp. C®) sont de telles variétés pour ¢ définit comme le pseudo-groupe
des C"-difféomorphismes (resp. C*-difféomorphismes) locaux de R™. Lorsque r > 1, on est ramené

a la définition usuelle de variété différentiable.

e Si ¢ est un sous-groupe du groupe affine de R", une ¥-variété est généralement appelé variété

affine.

On peut aussi chercher a généraliser I'espace sur lequel les cartes sont modelées et remplacer R™ par
un espace topologique X. Par exemple en remplacant R™ par C" et en prenant ¢ comme sous-groupe de
biholomorphismes locaux de C", on retrouve la définition usuelle de variété complexe. C’est exactement
cette généralisation que les (G, X)-structures permettent.

Dans le cas particulier d’'un groupe G agissant sur une variété différentiable X (souvent supposée
connexe), nous pouvons définir le pseudo-groupe des restrictions d’éléments de G agissant sur des ouverts
de X.

Définition 3.1.2. Soient X une variété différentiable connexe et G' un sous-groupe du groupe des dif-
féomorphismes analytiques de X. On dit que G agit analytiquement si pour toute paire (g, h) d’éléments

de G telle qu'il existe un ouvert non vide U de X avec g|,; = h|, alors g = h.

Définition 3.1.3. Soient X une variété différentiable connexe et G un sous-groupe du groupe des dif-
féomorphismes de X agissant analytiquement. Une (G, X)-structure sur un espace topologique M est la
donnée d'un atlas (Us, @a)aca avec |, Uy un recouvrement de M par des ouverts et ¢o : Uy — X des

homéomorphismes sur leurs images et tel que les changement de cartes

Gap = ¢5 005" da(Ua nUpg) — ¢(Us n Up)

ot I'on suppose U, N Ug connexe, soient des restrictions d’éléments de G.
Une variété M munie d'une (G, X)-structure sera appelée (G, X)-variété.

Définition 3.1.4. Soient M et M’ deux (G, X)-variétés. Un (G, X )-morphisme f : M — M’ est un

difféomorphisme local qui est donné dans les cartes de la (G, X)-structure par I'action d’un élément de G.

Exemple 3.1.5. En dimension 3, THURSTON conjectura que toute variété fermée de dimension 3 admette
une décomposition en sous-variétés telle que chacune d’elles admette une (G, X )-structure parmi une liste
des 8 structures géométriques riemaniennes maximales. Parmi ces 8 structures, on peut mentionner les

suivantes :
e géométrie Euclidienne : X = R?, G = O(3) x R?,
e géométrie Sphérique : X = S3, G = O(4),
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e géométrie Hyperbolique : X = H3, G = PO(3,1) ~ PSL,(C),
Voir [34, p.8] pour la liste exhaustive et détaillée.

Exemple des tores 3.I. Si X = R? et G := O(2) x R? le groupe de ses isométries, une (G, X )-structure
sur M est une structure Fuclidienne. Le tore de dimension 2 vu comme quotient de R? par I' := Z?2 est
un exemple de (O(2) x R?, R?)-structure. Remarquons que ce n’est pas la seule structure affine que le

tore admette (voir par exemple [53, Exemple 1.1]).

Action de Z ® 7Z sur R? Action par homothéties sur R?

FIGURE 3.1 — Deux (G, X)-structures du tore.

3.1.1 Holonomie et application developpante

Nous supposons maintenant que l’action de G sur X est transitive.

Lemme 3.1.6. Soient M une (G, X)-variété conneze et M son revétement universel. Alors il existe un
couple (dev,hol), od dev : M — X est un difféeomorphisme local donné, dans les cartes, par un élément

de G et hol : m (M) — G est un morphisme de groupes tel que :
dev(v.z) = hol(y).dev(x), Vyem (M), Vze M,

De plus, si (dev,h) et (dev’,h') sont deux tels couples, alors il existe g € G tel que dev’ = g o dev et
hol” = ¢, o hol, ot ¢4 o hol(y) = ghol(vy)g~!.

Démonstration. Soit ¢1 : Uy € M — X une carte de la (G, X)-structure. Si ¢g : Uy — X est une autre
carte de la (G, X)-structure telle que U; n Uy # & est connexe alors, il existe un unique élément g € G
tel que g o ¢po = ¢ sur U; n Us. On peut alors étendre ¢; en une application ¢ : Uy v Uy — X avec
¢ = ¢1 sur Uy et ¢ = g o ¢g on Us. On peut itérer ce procédé le long de n’importe quel chemin sur M.
Le prolongement analytique ne dépendant que de la classe d’homotopie du chemin, cette construction
définit une application
dev: M — X

Cette application est un difféomorphisme local et satisfait la condition d’équivariance par transformations
de deck :
dev(vy.z) = h(y).dev(z), Vvyem (M)
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avec h : w1 (M) — G un morphisme.

Remarquons que si 'on change la premiére carte ¢ par g o ¢1, on définit une autre application
développante g o dev et I’holonomie devient g o hog~!. On peut montrer quune paire (dev, h) détermine
une (G, X)-structure sur M . O

FIGURE 3.2 — Procédé géométrique de construction de 'application développante.

Définition 3.1.7. Dans le lemme précédent, 'application dev est appelée application développante, hol

est le morphisme d’holonomie et la paire (dev, h) est dite paire développante.

3.1.2 Relation aux G-fibrés principaux plats

Prenons une (G, X)-variété M muni d’un atlas {U, — X} et notons g,p les éléments de G qui cor-

respondent aux changements de cartes
ppodyt :UsnUs— Uy Ug

Nous pouvons, a partir de la donnée des g,g, construire un fibré P — M de fibre X et de groupe structural

G donné localement par les trivialisations
Mo : Py i=Uy x X - U,

et dont les points (u,x) et (u,y), avec u € Uy N Up et z,y € X, sont identifiés s'ils satisfont (u,y) =

(4; Gap(2))-
De fagon équivalente, si hol : m (M) — G est 'holonomie de cette (G, X)-structure, le fibré P est
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défini par Py := M Xhol X Ol M Xnol X est le quotient de Mx X par Paction de 71 (M) donnée par
T (M) x (1\7 X X) — M x X, (v,(u,2)) — (y.u,hol(v).z).

Remarque. La donnée d’une (G, X)-structure sur une variété M nous renseigne de
e l'existence d’'un X-fibré plat,
e l'existence d’une section transverse au feuilletage horizontal.

Si Y est un autre espace topologique munit d’une action de G alors, a partir d’un tel fibré P — M
de fibre X, on peut construire un autre fibré P’ — M de fibre Y dont les cartes de trivialisations sont

subordonnées a celle de P — M et les fonctions de transitions sont données par
d)aB : Ua N UB XY — Ua N UB X Y7 (u7y> = (umga,ﬂy)

Lorsque l'on considére Y = G muni de I’action de G sur lui méme par multiplication a gauche, on obtient
alors un G-fibré principal au dessus de M.

De plus, cette construction ne dépend que de la donnée du cocycle {g, 5} et fournit donc une construc-
tion qui descend au niveau des classes d’isomorphismes de fibrés. On pourra donc se restreindre a 1’étude
des propriétés du G-fibré principal associé a la (G, X)-structure et tirer des informations sur le fibré

construit initialement.

Définition 3.1.8. Soit M une variété. Une structure plate sur un G-fibré P — M est une trivialisation
de P dont les changements de cartes sont des éléments de G. Un fibré admettant une structure plate est
dit plat.

Remarquons qu’un fibré défini par une représentation admet une structure plate provenant de la
structure plate du produit M x X et action du groupe fondamental par transformations de deck préserve
la platitude du fibré. La proposition suivante nous dit que cette construction est en fait une caractérisation

des fibrés plats.

Proposition 3.1.9. Soit P un G-fibré principal sur une variété connexe M. Les conditions suivantes

sont équivalentes :
e P admet une structure plate,

o P est défini par une représentation p : 71 (M) — G.

Remarque. 1l existe une autre condition équivalente, ’existence d’une connexion plate sur P. Ce point
de vue ne nous sera pas utile par la suite, il est tout de méme important de le mentionner ici. Voir par

exemple [58].

Démonstration. Nous avons déja vu qu’a partir d’une représentation nous pouvons définir un fibré ad-
mettant une structure plate.

D’un autre coté, considérons la structure plate de P donnée par des trivialisations E|y, = U, x X avec
U, € U un recouvrement d’ouverts de M et des fonctions de transisitions gog € G. Prenons xg € U € U
et m1 (M, x0) 37 :[0,1] > M. Considérons aussi une subdivision 0 = tp < #; < --- <ty =1 de [0,1]
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telle qu'il existe Uy, Uy, -+ ,Un €U avec Uy = Uy = U et y([t;, ti+1]) < U; pour tout ¢ = 0,--- , N. En
posant
N
p(y) = | [ gii-1(v(t:))
i=1
le lecteur vérifiera que I'on a bien défini une représentation. O

3.2 Déformations des structures géométriques
Voici un des principes sur lesquels repose cette these.

Proposition 3.2.1 (Principe d’EHRESMANN-THURSTON, [97]). Soit M wune variété compacte équipée
d’une (G, X)-structure et holy son holonomie. Sihol est un morphisme suffisamment proche de hol alors
il existe une structure proche de la structure initiale dont I’holonomie est hol’. De plus, deuz (G,X)-
structures proches de la structure initiale sont isomorphes par un difféomorphisme proche de l'identité si

et seulement si leurs holonomies sont conjuguées par un petit élément de G.

Ici, on dit que deux morphismes d’holonomie hol et hol’ sont proches si les images d’une partie
génératrice (y,1,--- ,7,) de m(M) par ces deux représentations sont proches dans G”.

Ce résultat affirme qu’en déformant le morphisme holonomie d’une (G, X)-structure on peut obtenir
de nouvelles structures. Il dit aussi localement qu’a isotopie pres, une (G, X)-structure est complétement

déterminée par son holonomie.

3.2.1 Déformations infinitésimales de G-fibrés

La théoreme 3.1.9 nous offre la possibilité de regarder les déformations infinitésimales de ’holonomie
d’une (G, X)-structure comme déformations infinitésimales de la structure plate du G-fibré principal plat
P — M associé a cette holonomie. Ceci nous servira plus tard dans la comparaison des déformations de
structures complexes au déformations de représentations.

L’idée de ce qui va suivre est d’interpréter les classes d’équivalence de déformations infinitésimales de
la structure plate d’un G-fibré principal plat en terme de cohomologie de Cech.

Fixons un G-fibré principal plat P — M sur une variété M. Soit & un recouvrement de M par des
ouverts. La structure plate de P est équivalente a la donnée pour chaque paire d’ouverts (Uy, Ug) d'un
élément g.p € G, qui sont les fonctions de transitions. Elles doivent donc satisfaire les conditions de

recollement usuelles :

Jap © 9o =1d (3.1)
Gap © Y8y O gya =1d (3.2)

Considérons une application de changement de trivialisation, c’est a dire qui associe a chaque ouvert
U, € U un élément h, € G. 1l est facile de remarquer que la structure plate sur P — M donnée par les

nouvelles fonctions de transitions g/, 5 = ha gaghgl est équivalente a la structure plate initiale.
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Considérons une famille & un parameétre de fonctions de transitions g.s(t) définissant pour tout ¢ une

structure de fibré plat sur P — M avec

. dgap(t)
9ap = dt o €g

Les conditions de recollement (3.1) et (3.2) impliquent les conditions (de cocycle) suivantes :

gaﬂ + Gap © gﬁa o 9;51 =0
9ap t gap © gy © g;é = Jay =0
Soit Uy +— hq(t) avec ho(0) = Id une famille & un parameétre de changement de trivialisation et g, (t) ==

hao(t) © gap © hg(t)™! la famille (& un parametre) de fonctions de transitions associée. La déformation

infinitésimale associée a cette famille est

goz[i = ho/ — GJap © h,B 09;61

dhe(t
O .,
dt |,
Pour faire correspondre les classes d’équivalence de déformations de la structure plate de P — M avec

ou hy =

la cohomologie de Cech d’un certain faisceau, il nous faut définir ce « bon »faisceau. Pour la construction
qui suit, le lecteur pourra consulter [22, Section 14].

Si P — M est un G-fibré principal et F' un espace vectoriel sur lequel G agit via p : G — Aut(F),
on peut alors définir le G-fibré Fp associé & P — M par Fp := P x, F = (P x F)/G ou on identifie
(p-g,p(9)" L f) et (p, f) pour tout g € G, f € F et tout p € P. En particulier, on peut considérer gp le
fibré associé a P — M via ’algebre de Lie g de G ou l'action de G sur son algebre est la représentation
adjointe Ad.

Remarque. Si G agit sur F' par une représentation linéaire, le fibré associé est alors un fibré vectoriel.

Théoréme 3.2.2. Soit P — M un G-fibré principal plat. On défini Fy comme le faisceau des sec-
tions localement constantes du fibré associé gp. Alors, l’espace des classes d’équivalence de déformations

infinitésimales de la structure plate de P — M est donné par le groupe de cohomologie H'(M, Fa)-

Nous ne démontrerons pas ce théoréme, le lecteur intéressé trouvera les détails dans [55] ou [58].

3.2.2 Espace de déformation

Bien que ce ne soit pas logiquement nécessaire pour la suite, il est naturel de s’intéresser a l’espace
global des déformations d’une (G, X)-structure sur une variété donnée M. Nous en profiterons pour
aborder les résultats récents de N. THOLOZAN sur cet espace de déformations des (G x G, G)-structures.

Nous lavons vu plus haut, la paire développante (dev, hol) ne défini une (G, X)-structure qu’a l'action

du groupe G pres, ou 'action de G est donnée par
g.(dev,hol) = (g o dev, ¢4 o hol)
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D’autre part, notons qu’'un difféomorphisme ¢ de M se reléve en un difféomorphisme (5 de M qui
est 71 (M)-équivariant pour un certain automorphisme 6 de 71 (M). Si on se donne une (G, X)-structure
sur M donnée par une paire (dev, hol), alors le pull-back de cette structure le long de ¢ correspond a la
structure donnée par

¢*(dev, hol) := (dev o, hol of)

De plus, si ce difféfomorphisme est isotope a l'identité alors ’automorphisme correspondant 6 est néces-
sairement le morphisme trivial.

On est donc amené a considérer I'espace de déformation suivant :
Def . x) (M) = G\ {(dev, hol)| dev : M — X, hol—équivariante} Diff° (M)
Avec ces notations, on peut réécrire le principe d’Ehresmann-Thurston en disant que ’application
Def (¢ x)(M) — Hom(m (M), G)/G, (dev, hol) — hol

est un homéomorphisme local.

3.2.3 Complétude des (G x G, G)-structures

Nous avons déja mentionné dans I'introduction de ce chapitre 'importance de la notion de complétude
d’une (G, X)-structure et il convient donc de revenir sur les définitions inhérentes aux concepts qui lui

sont reliés.

Définition 3.2.3. Soit M une variété munie d’'une (G, X)-structure donnée par la paire développante

(dev, hol). Si dev : M — X est un revétement alors, la (G, X)-structure est dite compléte.

Dans le cas ou X est simplement connexe, dev est un difféomorphisme et on peut facilement identifier
M avec X /hol(m;(M)), voir 'exemple des tores 3.1.

Dans le lexique de [53], si Paction de 71 (M) (via hol) sur 'image U < X de dev est libre et totalement
discontinue alors, M s’identifie au quotient U/ hol(m1(M)) (en tant que (G, X)-variétés) et la structure

est dite uniformisable ou Kleniéenne. Le cas complet correspond a la situation U = X.

Remarque. Soit M une (G, X)-variété et hol son holonomie. Si X est munit d’une métrique riemannienne
(holomorphe ou plus généralement, une structure géométrique au sens de Gromov [38]) G-invariante,

alors cette structure descend a M.

Un cas particulier de ces (G, X)-structures qui nous intéressera plus tard est le suivant. Soit M une
variété compacte muni d’une (G x G, G)-structure ot G est un groupe de Lie semi-simple de rang 1, ou
le rang d’un groupe de Lie G est la dimension du tore maximal déployé de GG. Pour un tel groupe G, on
peut considérer l'espace homogene G = (G x G)/Ag ou Ag est la diagonale. Cet espace est naturellement
muni (G x G, G)-structure donnée par les isométries correspondantes aux translations a droite a gauche.
Les quotients de ces espaces par un sous-groupe I' © G x G sont bien connus.

Une question naturelle est de savoir quel sous ensemble correspond aux structures completes dans

I'espace des déformations Def ¢ x)(M).
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Théoréme 3.2.4 (THOLOZAN [93, Théoréme 3]). Soit G un groupe de Lie semi-simple de rang 1 et M
une variété compacte de méme dimension que G alors le domaine des (G x G, G)-structures complétes

forme une union de composantes connexes dans Def gy c)(M).

Pour plus de détails, voir [93, Theorem 3, p.1923].

Avec ce résultat, on sait donc que toute déformation d’une (G x G, G)-structure complete sur une
variété M restera complete. Avec le principe d’Ehresmann-Thurston, la question est donc maintenant de
savoir comment se comporte ['action de I'’holonomie sur X par déformation, c’est-a-dire reste-t-elle libre
et totalement discontinue ? Lorsqu’un morphisme d’holonomie vérifiera ces deux conditions, on dira qu’il
est admissible.

Il est donc naturel de s’intéresser a l'espace des morphismes Hom(mi(M),G x G) et de chercher un

critéere d’admissibilité a 1'action correspondante.

3.3 Admissibilité des représentations

Les premiers résultats concernant la caractérisation des quotients de groupes de Lie remontent & [63]
dans le contexte de quotients de PSLy(R). Les auteurs montrent que les quotients compacts de PSLy(R)

sont donnés par le quotient de PSLy(R) par un réseau I' agissant par
I' x PSLy(R) — PSLy(R), (v, ) — p(y) tay (3.3)

ol p est une PSLy(R)-représentation de T

Un peu plus tard, KOBAYASHI [59] généralise ce résultat aux quotients compacts de groupes de Lie
de rang 1. Ce que KASSEL redémontre dans sa thése [52] en utilisant d’autres outils (la projection de
Cartan, voir ci-dessous).

Une question assez naturelle se pose alors : étant donné une PSLy(R)-représentation p d’un réseau de

PSLs(R), action correspondante (3.3) est-elle libre et totalement discontinue (autrement dit, le quotient
est-il une variété compacte) ? Dans ce cas, on dira que p est admissible.
KULKARNI et RAYMOND conjecturent que seules les représentations a image dans un compact sont ad-
missibles mais GOLDMAN [32, Proposition 5] montre que ce n’est pas le cas et exhibe des représentations
suffisamment proches de la représentation triviale qui sont admissibles. Plus tard, GHYS montre le méme
résultat dans le cas qui nous intéresse dans cette these, celui de SLy(C) (ou PSLy(C)) (voir [31] ou voir
le chapitre 5) et KOBAYASHI généralise au cas des groupes de Lie de rang 1.

Nous rappelons ici les résultats connus sur 'admissibilité de ces représentations.

Soient G un groupe de Lie semi-simple linéaire, connexe et non compact. Soient K un sous-groupe
compact maximal de G pour lequel on a la décomposition de Cartan : G = KAT K oul A" est une chambre

de Weyl d’un sous-groupe de Cartan A dans G. On définit alors la projection de Cartan par
p:G— At

ou pu(g) est le seul de KgK n A™.
Dans notre cas, G = SLy(C) et on peut prendre
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o K =1SU(2),
e A le groupe des matrices diagonales de déterminant 1,
o AT = {diag(a,aY)|a > 1},

Remarquons aussi que dans ce cas, nous avons ’isomorphisme
AT ~R,, diag(a,a™') — In(a)

donné par un caractere additif.

La projection de Cartan p(g) composée avec cet isomorphisme est alors obtenue comme la moitié du
logarithme de la plus grande valeur propre de *gg. De facon plus générale, pour tout groupe de Lie de
rang 1, cet isomorphisme est vérifié et on notera dans la suite encore par p la composition de la projection
de Cartan et de cet isomorphisme.

Un des premiers critére d’admissibilité remonte & KOBAYASHI [59] et BENOIST dans [8]. Ce critére

s’énonce de la fagon suivante

Théoréme 3.3.1 (BENOIST [8]). Soient G un groupe de Lie semi-simple linéaire, conneze et non compact,
H un sous-groupe connexe réductif de G et L un sous-groupe discret de G. Comme précédemment, notons
p: G — A% la projection de Cartan de G. Alors, L agit proprement sur G/H si, et seulement si, pour
tout compact C dans A, Uensemble (L) n (u(H) + C) est borné.

Dans le cas G = SLy(C) x SLy(C), H = Agp,(c) la diagonale de SLy(C) x SLy(C) et L = (p,i)(T),
avec 7 le plongement naturel d’un sous-groupe discret (supposé sans torsion) I' dans SLy(C), agissant sur
SL3(C) ~ SLy(C) x SLy(C)/Ag,(c) via & — g~ 'zh avec (g,h) € L on retrouve un critére d’admissibilité
sur p.

Ce critére sera amélioré par les travaux de KASSEL [52] (voir aussi [60] et [63]) .

Théoréme 3.3.2 (KASSEL, [51, Theorem 1.4]). Soit G un groupe de Lie semi-simple connexe de rang
1etp:G— Ry sa projection de Cartan. Soit T' un sous-groupe discret sans torsion de G x G. Alors,
Vaction de T sur (G x G)/Ag est propre et totalement discontinue si, et seulement si, d permutation des

facteurs pres, I' est un graphe de la forme

{(p(7),7), v € Lo}

ot Ty est un sous-groupe discret de G et p € Hom(I'y, G) est tel qu’il existe A <1 et C > 0 tels que pour
tout v € To, u(p(v)) < Au(y) + C ot p: G — Ry est la projection de Cartan de G.

On peut voir la condition d’admissibilité de la fagon suivante : p est admissible si, et seulement si,

Iensemble (p o p, 1) (T") est situé sous la diagonale de Ry x R et qu’il s’en éloigne & linfini.

Définition 3.3.3. Si g est une isométrie d’un espace X, la longueur de translation associée a g, notée

A(g) est définie par
Ag) = inf d(z, g.x)
zeX
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Définition 3.3.4. Soit p : I' — G une représentation. On définit alors le ratio des longueurs de translation

de p par

0 =

Dans le cas ou G a un rang égal & 1 (par exemple dans le cas G = SLy(C)), on a un lien entre la

fonction A et la fonction p, établi dans [9] :

A7) = lim lu(vm)

m—00 M

et GUERITAUD-KASSEL montrent ensuite que la constante C’(p) est égale a la borne inférieure des réels
C = 0 tels que ensemble {u(p(y)) — Cu(y), v € I'} < R soit majoré.

A partir de maintenant, nous supposons que G est un groupe algébrique semi-simple connexe de rang
1 et T" un sous-groupe discret de type fini sans torsion de G.

Finalement, en faisant agir I' sur un arbre simplicial KASSEL, relie cette constante avec une autre

constante : la constante minimale de Lipschitz.

Définition 3.3.5. Soit p une représentation de I' dans G. On dira qu'une application f : H> — H? est

(i, p)-équivariante, ol ¢ : I' < SLg(C) est 'inclusion naturelle, si

Vyel, f(y.z) = p(v) - f(z)

Définition 3.3.6. Soit p une représentation de I' dans G. On appelle constante de Lipschitz minimale

associée a p la quantité
C(p) = inf{Lip(f)|f : H® — H3, (i, p)-équivariante}

ot Lip(f) est la constante de Lipschitz, c’est-a-dire que f vérifie d(f(z), f(y)) < Lip(f) d(z,y) pour tout

z et y dans H? et que cette constante est la plus petite constante telle que cette inégalité est vérifiée.

Dans notre cas, cette constante est toujours finie (voir [42, Lemma 4.7]).

Dans le cas de G = PSLy(R), SALEIN [89] montre dans sa these que 'existence d’une application p-
équivariante contractante (ce qui revient a dire C(p) < 1) implique 'admissibilité de la représentation p.
Ce résultat peut-étre généralisé a d’autres groupes de Lie.

On a le résultat suivant

Théoréme 3.3.7 (KASSEL et GUERITAUD, [42, Theorem 1.8]). Les conditions suivantes sont équiva-
lentes :

1. p est admissible,

2. C(p) <1,

3. C'(p) <1,

4. il existe des constantes a <1 et C > 0 telles que p(p(y)) < au(y) + C.

Remarques.
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e La deuxiéme condition permet de montrer plus facilement que cette condition est une condition

ouverte (voir proposition suivante).
e La troisieme condition permet de montrer que I’admissibilité ne dépend que du caractere de p.

e Le dernier critere présent dans ce théoréme n’est pas le plus exploitable puisqu’il dépend du choix

d’une projection de Cartan.

Ces conditions sont ouvertes (voir [42]) et on obtient alors :

Proposition 3.3.8 ([41, Corollary 1.18]). Le sous-ensemble formé des représentations admissibles de T'

dans G est un ouvert (pour la topologie standard) de Hom(T', G).

L’implication C'(p) < 1 = p admissible est un cas particulier du critére de propreté de Benoist,
lorsque cette inégalité est vérifiée, on dira que p est uniformément dominée par linclusion i [89]. L’im-
plication réciproque et ’équivalence C(p) < 1 < C’(p) < 1 sont démontrées dans [52] dans le cas SLy(R)
et généralisées dans [42] au cas G = Isom(H") et ' géométriquement fini.

De plus,

Proposition 3.3.9 (KASSEL et GUERITAUD, [42, Proposition 1.5]). L’application
Hom(T,G) =R,  pr C(p)

est continue.

Remarque. Des exemples de représentations admissibles exotiques de réseaux hyperboliques en dimension
3 et 4 ont étés construits par LAKELAND et LEININGER [67]. Ces constructions reposent sur 'existence

de polytopes hyperboliques dont les angles diédraux sont des angles droits.

Notons que les rappels précédents permettent d’entrevoir un lien entre I’ensemble des représentations

dominées et ’espace de Teichmiiller :

Théoréme 3.3.10 (DEROIN et THOLOZAN, [95] [21]). Soit ' le groupe fondamental d’une surface com-
pacte 3 de genre supérieur d 2 et soit p une représentation non fuchsienne de I' dans un groupe de Lie de
rang 1. Alors le quotient de l’ensemble des représentations fuchsiennes qui dominent p par G-conjugaison

est non vide et homéomorphe a l’espace de Teichmiiller de 3.
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CHAPITRE 4

REPRESENTATIONS, CARACTERES ET
VARIETES ASSOCIEES

OUS AVONS PRECEDEMMENT SOULIGNE LES RELATIONS qui existent entre les (G, X )-structures d’une
N variété M et I'ensemble des représentations de son groupe fondamental 1 (M) dans G (via I'holo-
nomie). Afin d’appliquer le principe d’Ehresmann-Thurston et de déformer la (G, X)-structure au moyen
de la déformation du morphisme d’holonomie, il est donc important de s’intéresser a la géométrie de I'es-
pace des représentations. Nous verrons par exemple comment munir cet espace d’'une structure d’espace
C-analytique et d’une structure de schéma.

Cet espace, appelé variété des représentations, partage aussi une relation étroite avec la cohomologie
du groupe 71 (M). Un des exemples les plus connus de ces relations est donné par la construction de WEIL
qui fournit un isomorphisme entre le groupe des cocycles de 71 (M) (a valeur dans 'algebre de Lie g de
G munie de la structure de 71 (M)-module induite par la représentation) et 'espace tangent (de Zariski)
a la variété des représentations. Afin d’énoncer le principal résultat de cette these, il est donc essentiel
dans un premier temps de revenir sur les définitions de base de la cohomologie des groupes. Puis, dans
un second temps, nous reviendrons sur la géométrie de la variété des représentations et comme annoncé,
sur les liens qu’elle partage avec cette cohomologie précédemment révisée.

Nous terminerons ce chapitre sur la notion de quotient catégorique et plus particulierement celui
de la variété des représentations par ’action de conjugaison. Ce dernier point nous permettra, dans le
chapitre 7, de comparer ces quotients affines aux quotients champs algébriques/analytiques et d’insister

sur 'intérét de ce langage.

4.1 Cohomologie des groupes

Un des ouvrages les plus complets sur le sujet est le livre de K. BROWN [13].

4.1.1 Définition formelle

Méme si la définition formelle ne nous sera pas, en tant que telle, utile plus tard, nous avons besoin

d’énoncer un résultat technique qui nécessite son apparition ici. Dans toute la suite, G désignera un
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groupe, que l'on supposera multiplicatif.

Définition 4.1.1. Soit M un groupe abélien. Une structure de G-module sur M est la donnée d’un
morphisme o : G — Aut(M) de G dans le groupe des automorphismes de M. Naturellement, un G-

module est la donnée d’une paire (M, o).

Si il n’y a pas d’ambiguités, on notera simplement par g.m 'action o(g).m.
Rappelons que le groupe abélien libre Z[G] sur G est défini comme le groupe abélien libre dont une

base est I’ensemble des éléments de G. Autrement dit, les éléments de Z[G] sont les sommes finies

Z aq9, ag€N

geG

avec les a4 presque tous nuls. De plus, on peut étendre la multiplication dans G' a une multiplication dans

Z[G], conférant a ce dernier une structure d’anneau, de la faon suivante :

(Z agg> (Z bgg> = D agbygd = cyg

geG geG g9,9'eG geG

avec €4 = Zhl:g ahbl = Z}LEG ahbhag.

Une propriété importante de cette construction est la suivante

Proposition 4.1.2. Soit R un anneau. Une fonction f : G — R telle que f(g9') = f(9)f(¢') et f(1) =
Idg peut étre étendue de fagon unique a un morphisme d’anneauz F : Z|G] — R qui coincide avec [ sur

Uinjection naturelle G — Z[G].

Cette propriété universelle nous dit qu'un G-module peut étre vu comme Z[G]-module et réciproque-
ment.

On considére maintenant la catégorie Z[G]-mod des Z[G]-modules ainsi que le foncteur
Homgy[g(Z, —) : Z|G]-mod — Ab, M — Homg(Z, M)

ou Ab est la catégorie des groupes abéliens et Z est le G-module trivial.
Il est bien connu que ce foncteur est exact & gauche mais ne l'est pas a droite. Et on va définir la
cohomologie de G comme les foncteurs dérivés & droite R* du foncteur Homgyg)(Z, —), c’est-a-dire les

foncteurs Ext.

Définition 4.1.3. Soit G un groupe et M un G-module. La cohomologie de G & valeurs dans M est
définie par
HY(G, M) = Extjyo(Z, M)

Remarquons que le foncteur Homgz)(Z, —) est identifié au foncteur (=) des G-invariants. En effet,
puisque Z est un G-module trivial, un élément f € Homyq)(Z, M) = {f : Z — M| f(g.a) = g.f(a)} est
entierement déterminé par son image sur un générateur de Z, f(1) = m € M qui doit alors étre G-

invariant. On obtient donc
Homy[g)(Z, M) ~ {me M|gm =m, ge G} = M€
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Finalement, on a que H*(G,—) = R'(—)C.
Pour pouvoir travailler avec ces groupes de cohomologie, nous nous servirons d’une caractérisation

plus pratique, qui détermine ces groupes a partir d’un complexe.

4.1.2 Résolution projective et coordonnées homogenes

Pour ce faire, remarquons aussi que Extz[G](Z,M ) peut étre obtenu soit en dérivant le foncteur
Homgy[g1(Z, —) et en I'appliquant a M soit en dérivant le foncteur Homzpgy(—, M) et en lui appliquant
Z. Ainsi, le groupe H*(G, M) peut étre obtenu a partir d’une résolution injective de M ou bien & partir
d’une résolution projective de Z (vu comme Z[G]-module). La deuxiéme résolution posséde évidemment
le grand avantage de pouvoir étre appliquée a tout G-module M. De plus, il existe une telle résolution

canonique. La résolution libre de Z[G] est la résolution
Zn+1 Zn Z2 Zl
== ZIG"] == - = ZIG] =—Z — 0
ou les applications A" sont définies par les applications A™ de G™ dans G™~! de la facon suivante

n—1

(A")(g1s- 1 9n) = g1:(g25- s Gn1) + D (1) (G151 GiGirts- - gn) + (=1 (915~ 1 gn-1)
=1

et étendues & A" : Z[G"] — Z[G"!] par la théoréme 4.1.2. 11 est relativement facile de montrer que
A" oA =0,

Cette méme proposition permet de voir que le complexe (Homz[g] (Z|G*], M ),Z.) est isomorphe
au complexe (Map(G*, M),d*) ot Map(GP, M) est I'ensemble des applications de GP dans M et la
différentielle d* est induite par A° via

Hom (A", M
& s Map(G™, M) = Homgy) (Z[6"], M) —™ ), Homg ) (2[Gm11, 21) = Map(Gn, )

Ce qui donne explicitement pour f : G"~! — M :

(dnf)(gh 7gn) = f(A(gh ;gn))
n—1

= gl‘f(927 e 7.977,71) + 2 (_1)1f<gl7 5 90941, >gn) + (_l)nf(gh e ugnfl)
i=1

On note respectivement Z™ (G, M) et B"(G, M) ensemble des n-cocycles et ’ensemble des n-cobords,
respectivement définis par le noyau de et I'image de d". On notera également dans la suite CP (G, M) :=
Map(GP, M).

On a, par définition,

H"(G,M)=Z"(G,M)/B"(G,M)
Exemples 4.1.4 (Cohomologie en bas degrés).

e En degré 0 on a
HY(G,M) =ker(d" : G° - M) ={feM|0=4d"f(g) =g.f — f} = MC
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comme annoncé précédemment.

e En degré 1 la condition de cocyle est la suivante

feZN G, M) = 0= (d*f)(g1,92) = 91-f(92) — f(9192) + f(91)

On appelle les morphismes qui satisfont cette condition les morphismes croisés.

Notons que la résolution libre de Z[G] et le lemme du serpent donnent conjointement la proposition

suivante

Proposition 4.1.5. Soient My, Ms et M3 trois G-modules. Si
O—>M1—>M2—>M3—>O

est exacte alors, pour tout entier n > 0, il existe une application 6™ : H"(G, M3) — H"TY(G, M) telle

que la suite
0— HO(Gle) - Hl(GaMz) - HO(G»MB) 6—0’ Hl(GaMl) - HI(G»M2) - Hl(GaM2) 6—1’

est exacte.

4.1.3 Suite spectrale LHS et suite inflation-restriction

Soit G un groupe, H un sous-groupe normal de G et M un G-module. Considérons la suite exacte
suivante
1-H->G—->G/H—-1

On peut facilement vérifier que prendre successivement les H-invariants puis les G/H-invariants de M
revient a en prendre directement les G-invariants. La question est de savoir comment se comporte la
composition des foncteurs dérivés R (—)/H o R7(—)H par rapport aux foncteurs dérivés R**7(—)%. Nous
allons voir que cette comparaison est expliquée par la suite spectrale de LINDON-HOCHSCHILD-SERRE,

cas particulier de :

Théoréme 4.1.6 (Suite spectrale de GROTHENDIECK). Soit A,B et C des catégories abéliennes®. On

suppose qu’il existe deux foncteurs
AL
exacts a gauche. Supposons de plus que
o A posséde assez d’injectifs,
o G enwvoie les injectifs sur les injectifs

alors il existe une suite spectrale dans le premier quadrant (c’est-a-dire ES? = 0 pour tout p < 0 ou

q<0)
RPF o RIG(X) — RPYY(FoG)(X)

1. Grossierement, ce sont des catégories dans lesquelles la collection de morphismes entre deux objets admettent une
structure de groupe abélien et dans lesquelles les noyaux et conoyaux existent et sont essentiellement uniques
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pour tout X € A.
En particulier, en appliquant ce théoreme a la situation précédente
)" ()
Z|G]-mod —— Z(G/H)-mod ——— Ab
on obtient :

Proposition 4.1.7 (Suite spectrale de LINDON-HOCHSCHILD-SERRE). Si G est un groupe, H un sous-

groupe normal de G et M un G-module. Alors, il existe une suite spectrale dans le premier cadrant
HP(G/H,H(H,M)) = HPT1(G, M)

De plus, a partir d’une suite spectrale donnée, nous pouvons extraire la suite des cing-termes. Plus

précisément

Proposition 4.1.8. Si
B2 — H™(X)

est une suite spectrale dans le premier quadrant alors on a la suite exacte suivante :
0— E;° - HY(X) - Ey' — B2 — H?(X). (4.1)

Démonstration. 1l suffit d’écrire la page E5 de cette suite spectrale et de remarquer que par hypothese

de convergence on a la filtration de H' suivante
0— EY' - HY(X) — (ker B - E§’0> - 0.
ainsi que la suite
0— E2°/Im(Ey") — H?(X).
On obtient finalement la proposition en concaténant ces deux suites. O

En particulier, dans le contexte de la proposition précédente, on obtient :

Corollaire 4.1.9. Si G est un groupe, H un sous-groupe normal de G et M un G-module. Alors, on a

la suite exacte suivante, dite inflation-restriction
0— HY(G/H,M™T) > H' (G, M) - H'(H, M)/ - H>(G/H,M") - H*(G, M)

4.1.4 Cup-produit

Soit G un groupe. On va maintenant définir I’application cup-produit.

Théoréme 4.1.10. Pour tout couple de G-modules A et B, il existe une, et une seule, famille d’appli-
cations bi-additive
—: H"(G,A) x H*(G,B) - H**(G,A® B)

qui satisfait les conditions suivantes :
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e c¢lle est fonctorielle en A et B,
e pourr =5 =0, le cup-produit est lapplication induite par A x B¢ — (A® B)¢,

e s5i0—->A A > A" >50et0—>AQRB > ARB - A" ® B — 0 sont des suites exactes de
G-modules, alors pour o” € H"(G,A”) etbe H*(G,B) on a

(6a") — b= 8(a" — b) € H™**1(G, A' ® B)

ot § sont les morphismes de connexion,

e de la méme facon, si0 - B - B —>B" -0¢e0—>AQRB - AR B - A® B” — 0 sont des
suites exactes de G-modules, alors pour a € H" (G, A) and V" € H*(G,B") :

Sla—b") = (-1)"a— (6v")e H G, A® B')
ot § sont les morphismes de connexion,

La preuve de I’existence n’est pas tres instructive d’autant que les coordonnées homogenes fournissent

une expression agréable a cette famille d’applications :
—: CP(G, M) ® CU(G, My) — CP*(G, My ® Ms)
est définie par la formule suivante, pour u € CP(G, My) et v € C4(G, M), on pose

U~ (g1, Gptq) = ulg1,  , 9p) @1 Gp-V(Gp+15° " s Iptq)

Il est facile de vérifier qu’elle est compatible avec la différentielle, au sens ou I'application descend au
quotient
~ HP(G, Ml) ® Hq(G, Mg) g H;D-HJ(G’ M1 ® MQ)

et vérifie les propriétés du précédent théoreme.
Si de plus on a une application bilinéaire b : M7 ® My — Mj3 compatible avec 'action de G a valeurs

dans un G-module M3, on peut composer le cup-produit avec b :
bo—: HP(G,M;)® HY (G, My) — HPT (G, M3)

Dans le cas particulier qui nous intéressera, si I' © G est un sous-groupe d’un groupe de Lie G et g son
algébre de Lie, alors la représentation adjointe Ad défini une structure de I'-module sur g et le crochet de
Lie [.,.] : g® g — g sur g permet de définir le cup-crochet [—]: CP(T,g) ® CU(T,g) — CPT4(T, g) par

[U ~ U](Fyla"' 77p+q) = [u(glv 7gp)7g1 "'gp'v(gp+17"' agp+q)]

On a par exemple pour p=¢q¢ =1

[e = 1y, 72) = [e(m), Ady, ¢ (72)]
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4.1.5 Lien avec la cohomologie de Cech

Un dernier fait dont nous aurons besoin en lien avec la cohomologie des groupes est sa correspondance
avec la cohomologie de Cech dans certains cas. En particulier, dans le cas d'un quotient X /G, il est aisé

de comparer la cohomologie de X avec celle de G comme en atteste la proposition suivante.

Proposition 4.1.11 ([79, Appendix to §2, p.22]). Soit Y = X/G avec G un groupe discret agissant
librement et de fagon totalement discontinue sur une variété différentielle X (munie de son faisceau

structural Oy ). Alors, pour tout faisceau F sur'Y il existe
¢« HP(G, H(X, n*F)) — HP(Y, F)

ou w: X — Y estla projection.
De plus, Uapplication ¢'z a les propriétés suivantes
1. ¢F est compatible avec le cup-produit,
2. si H(X,7*F) = {0}, 1 <i <k alors ¢z, 0 < i < k est un isomorphisme,
3. st
0>F—>F —>F -0

et
0— H'(X,n*F) - H(X,n*F') - H(X,7*F") - 0
sont exactes, alors on a un morphisme entre les suites exactes longues associées H*(G,—) et

He(Y,—).

Corollaire 4.1.12. Sous les hypothéses de la proposition précédente, si X est une variété de Stein et
w*F est cohérent alors,
HP(G, H*(X,7*F)) ~ H?(Y, F)

Démonstration. Cela découle du théoréme B de Cartan [15] qui affirme que si X est une variété de Stein
et F un faisceau cohérent sur X alors H' (X,F) = 0 pour tout ¢ > 1. O

Remarque. Le cas qui nous intéressera est celui des quotients SLo(C)/T". La proposition précédente s’ap-

plique et pour tout faisceau cohérent F sur SLy(C)/T on a

HP (D, H°(SLy(C), 7* F)) ~ HP(SLy(C)/T, F)

4.2 variété des représentations

Passons maintenant a la construction des variétés de représentations, de caracteéres ainsi que des
schémas associés.

Dans toute la suite, nous nous restreignons au cas du groupe de Lie SLy(C) pour éviter d’alourdir
les propositions avec des hypotheses sur G. Le lecteur intéressé pourra consulter [90] ou [70] pour plus

détails.
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Définition 4.2.1. Soit I" un groupe. On appelle variété des représentations de T’ ’ensemble Hom(T', SLo (C)).
On le notera R(T").

Le terme de variété dans la définition est justifiée par la proposition suivante :

Proposition 4.2.2 (CULLER et SHALEN, [19]). Soit T' un groupe finiment engendré. La variété des

représentations de I' admet une structure d’ensemble algébrique affine.

Démonstration. Fixons une présentation (v, ,v,| R1, -+, Ry de ', avec n et m deux entiers (notons
que m € N U {o0}). L’espace des SLy(C)-représentation de T, est naturellement identifié aux n-uplets de
matrices de SLy(C) satisfaisant les relations R; (le théoréme de la base de Hilbert [46] nous permet de
remplacer Pensemble des équations données par les relations R; par un ensemble fini d’équations). De plus,
deux présentations différentes de I' donnerons lieu a un isomorphisme entre les schémas correspondants.

O

En remarquant que SLy(C) est aussi une variété complexe, cette méme construction permet d’affirmer
que R(T") est aussi un espace C-analytique. Plus précisément, autour d’un point de (g1, - , gn) € SLo(C)™,
R(T") est donné par les fonctions holomorphes obtenues par composition de (g1, -+, gn) — Ri(g91,- " ,9n)
avec les fonctions holomorphes définies dans un voisinage de Id dans SLy(C) et s’annulant en ce point.

Afin d’étudier les représentations d’un groupe I' dans SLy(C), il est utile d’associer & un tel groupe
une schéma algébrique affine, que I’on appellera aussi variété des représentations, tel que ’ensemble de ses
points fermés corresponde & R(T"). Nous allons par la suite voir que ce schéma contient des informations
plus subtiles que R(T").

Puisque SLy(C) est un groupe algébrique d’équation ad — bc — 1, son anneau de coordonnées est

C[SL:(C)] = Cla, b, c,d]/(ad — bc — 1)

Et si ' est un groupe de présentation finie, ¢’est-a-dire I' = Fy/H ot Fiy est le groupe libre & N éléments

et H un sous-groupe normal définissant les relations, on pose
Rep(T') :== C[SLy(C)|®V /Iy

Ou Iy est I'idéal définissant les relations données par H.
Définition 4.2.3. On appelle aussi variété des représentations le schéma affine R(T") := Spec(Rep(T)).

Notons qu’une représentation p € Hom(T', SLy(C)) permet de construire I'idéal maximal des fonc-
tions qui s’annulent sur (p(vy1),---,p(7n)) © SLa(C)V et donc un point fermé du schéma R(I'). Et
réciproquement, chaque point fermé de R(I") définit une représentation p : I' — SLy(C).

On obtient finalement une application
R(T) - R(T)
qui est I'application duale de
Rep(T') — C[SL>(C)]®"//Ty = C[Hom (T, SLs(C))]
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Remarque. KAPOVICH et MILLSON [75] ont montré qu’il n’y avais pas de restrictions locales de la géo-
métrie a la variété des représentations d’un groupe fondamental de variété de dimension 3 (la géométrie
de ces variétés suit la "loi de MURPHY"). Plus précisément, si X < C¥ est un schéma algébrique affine

sur Q et x € X un point rationnel alors il existe
e un sous-schéma ouvert X’ ¢ X contenant x,
e une 3-variété fermée M,
e une représentation p € R(m1(M)),

tel qu’il existe un isomorphisme de germes analytiques
f i (R(ru(M)),p) = (C* x X,0 x )

Cela étant, nous ne savons pas si ce théoréme est encore valide si ’on remplace M par une 3-variété

fermée hyperbolique (confer [75, Question 8.2]).

En particulier, le schéma R(T") peut-étre non réduit (c’est-a-dire qu’il existe des éléments nilpotents
non-nuls dans Og (r),, pour un certain x € R(I")) et puisque les espaces de Kuranishi (confer le chapitre 1)
peuvent étre non réduits, nous devons bien considérer la variété des représentations non réduite et non

sa réduction.

Remarque. Puisque ce schéma possede deux topologies, nous prendrons la convention de parler de topo-
logie de Zariski en ajoutant le pré-fixe Zariski ou en précisant clairement lorsque cela sera nécessaire. On

parlera dans ce cas de Zariski-ouverts, Zariski-dense, espace tangent de Zariski etc.

Exemple 4.2.4. Prenons I' = Z" le groupe abélien libre a r générateurs ~i,---,7,. Proche de la
représentation triviale pg : I' — Id (identifiée au point (Id,--- ,Id) € SL2(C)"), toute représentation est
déterminée par un r-uplet d’exponentielles d’éléments de sl (C) I’algebre de Lie de SLo(C) ('algeébre des
matrices de trace nulle). L’application exponentielle exp : sl5(C)" — SLy(C)" définie une carte locale
en ce point et les relations de I' (& savoir les relations de commutativité v;v;; 17;1 = 1) définissent la

variété des représentations comme le céne dans sly(C)™ définit par
{(Xla e 7X7") € 5[2(C)T | [XMX]] = 07 V1 < 7”] < T}

Rappelons le fait bien connu suivant :
Lemme 4.2.5. Le groupe fondamental d’une variété compacte est de présentation finie.

Idée de démonstration. Toute variété différentielle compacte a le type d’homotopie d’'un C'W-complexe
fini. Par le théoreme de Van Kampen, le groupe fondamental d’'un C'W-complexe fini est de présentation
finie. O

Définition 4.2.6. Soit M une variété différentiable. On appelle variété des représentations de M le
schéma affine R(m (M)).

Le résultat précédent affirme en particulier que la variété des représentations de M pour toute variété

admet une structure d’espace C-analytique.
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4.2.1 Construction de Weil et espaces tangents
Pour le reste de cette section, fixons I' un groupe finiment présenté et

<717"' a’Yn|R1a"' aRm>

une présentation de I'.

Nous rappelons maintenant la construction de I'espace tangent donnée par WEIL. Soit p; un chemin

(supposé de classe C®) de représentations émanant de p € R(I"). Posons

c(v) = dp;iw t:Op(v)‘1
On a alors
() = 2P "1
(7 o tzop(w)
= G ) o)

On obtient alors ¢ € Z*(T, sl2(C),)

Réciproquement, si c € Z*(T, sl3(C),), on définit () = €'V p(7) et on a que

he(Nha(y') = €0 p(1)e! T p(y')
= D p(1)p(y () p(r M p()p(+)

= M etrMe )P0 (/)

= 0 p(37') + o(t)
= he(vy') + o(t)

Autrement dit, h; est une représentation qui vérifie la condition pour étre un morphisme & l'ordre 1.

Cette construction nous ameéne au résultat suivant :
Théoréme 4.2.7 ([70, Proposition 2.2]). L’application
T7"R(T') — Z*(T,sl5(C),)
construite précédemment, est un isomorphisme et Uinclusion I < \/T induit une injection
T7R(D)req — Z*(I',512(C),)
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0t R(T)req est la réduction du schéma affine R(T') et I ’idéal définissant la variété R(T).

De plus, si p; est donné par la conjugaison de p par un chemin de matrices A; tel que Ay = Id alors

, . \ dA
le cocycle formé est un cobord donné par v — X — Ad,,) X ou X = <5+

|t=0. Si on note O, l'orbite

de p par conjugaison, l'inclusion 7,0, < T,R(I') correspond, via I"isomorphisme construit plus haut, &
inclusion B} (T, s15(C),) — Z(T',sl3(C),).

Remarque. Pour un exemple ou Iinclusion TZ"R(I'),eq — Z(T,sl3(C),) étre stricte le lecteur peut

consulter [44, Example 2.18].

Exemple 4.2.8. Reprenons 'exemple précédent de I' = Z". L’espace tangent de R(I") au point de la
représentation triviale n’est pas difficile & expliciter. En effet, la structure de I'-module de sl3(C) donnée
par Ad,, est triviale.

On a donc l'isomorphisme canonique suivant Z'(T,sl5°) ~ ZY(T',C) ® sl2(C). On a évidemment
BY(T,s15°) = 0 et on en déduit

HY(T,s5°) = Z1(T',C) ® 512(C) = Hom(F,,C) ® sl3(C) ~ C" ® 5l5(C)

4.2.2 Déformations de représentations

Nous voulons construire dans cette section des déformations infinitésimales de représentations. Cette

section est essentiellement tirée de [45]

Définition 4.2.9. Soit p € R(T'). Une déformation formelle de p est un morphisme
po + I' = SLa(C[[t]])

tel que po|i=0 = p-

Il est bien connu qu’une telle déformation peut s’écrire sous la forme

oo i 7Y > €XD (Z tiq(v)) p(7)

avec {c;} < C*(T,sl3(C),).

Etant donné n-cochaines ¢; € C! (T, s15(C),), i =1,--- ,n on note plevent Papplication

plerend i T — SLy(C[t]), v+ exp (Z tici(”) Pl

i=1

Définition 4.2.10. Soient des cochaines ¢; € C*(I,sl5(C),), i = 1,--- ,n. On dit que plevent vérifie

la condition d’homomorphie a l'ordre k, k < n si
pr o pler e} e Hom(T, SLy(C[t]/(£5+1)))
ott py, : SLa(C[t]) — SLa(C[t]/(t**1)) est 'application induite par la projection C[t] — C[t]/(tF*1).
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Supposons que pour des cochaines ¢;, p, = pt¢t ¢} vérifie la condition d’homomorphie & Pordre
n. Nous voulons construire ’obstruction a éteisomorpndre cette application a 'ordre n + 1, c’est a dire
I'obstruction & lexistence d’une cochaine ¢,11 € C*(T,sl2(C),) telle que plersent1} vérifie la condition
d’homomorphie a lordre n + 1. Cette construction a été faite dans [45] en suivant les idées de DOUADY
que nous reverrons dans leurs contexte original au chapitre suivant.

Une application p,, = pl¢t" ¢} qui vérifie la condition d’homomorphie & Pordre k, k < n, permet de
définir une structure de I'-module sur le groupe abélien sly(C[t]/(t*11)) via la représentation adjointe de

Pk © pp. Nous noterons g cette algébre muni de cette structure.

Lemme 4.2.11 ([45]). Soient des cochaines ¢; € C1(I',sl5(C),), i = 1,--- ,n. Pour tout 1 < k < n,

Vapplication py, = ptctcn} wérifie la condition d’homomorphie & Uordre k si, et seulement si, cp =

dpy
Do CZ p;l c cl(F»GZ’ll) vérifie la condition de cocycle.

Démonstration. Supposons que p, soit un morphisme a l'ordre k. Alors

pn(7Y) = pu()pn(y') mod tF T
en appliquant %, on a
W( /) = T(V)pn(’/) + Pn(’)’)ﬁ(’}/) mod tk

Ce que 'on peut réécrire

d%(w’)%(w’) L= 20 () 1+Adpn<w>( P () pu () 1) mod ¢*

Et finalement, on a :
Cioai(1) = Cioi(0) + Adyy_op () (Cii (7))

D’un autre coté, si C}' est un cocycle, en faisant le calcul précédent dans 'autre sens, on voit que
a Pordre k, pour tout v, € T, pn(7)pn(?') et pn(yy) differe d’une constante C € sly(C) mais cette

différence est nulle pour v = v’ = Id. On retrouve donc bien la condition d’homomorphie a l'ordre k. O

La suite exacte

0—C—C[t]/(t") > C[t]/(t"") — 0
induit la suite de I'-module suivante :
0—sk(C), —gpr > a7y — 0
On obtient la suite exacte suivante, tirée de la suite exacte longue associée en cohomologie :
H'(T,512(C),) — H'(D,gf) 2= H' (T, gfy) & HY(L.5(C),) (4:2)

ou ¢" est I’application connectante décrite dans la théoreme 4.1.5.
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4.8. Variété de caracteres

Comme précédemment, considérons n cochaines ¢; € CY(T',sl(C),), i = 1,---,n et CF = pyo

d
Pr p. L. Supposons que p,, soit un morphisme jusqu’a 'ordre n, alors par le lemme précédent, C? est

un élément de H'(T', go" ;). Par exactitude de la suite (4.2), si la classe représentée par §™(C") est nulle,

alors il existe un élément 63:/1 dans ZY(T, g?") tel que C" = p, (C%) Ou, de facon équivalente, il

existe une cochaine ¢, telle que py, 41 == p">“»+1 soit un morphisme a ’ordre n + 1.

Nous pouvons résumer cette construction dans la proposition suivante

Proposition 4.2.12 ([45]). Soient des cochaines c; € C*(T',sl5(C),), i = 1,--- ,n telles que plcen}
d pn
dt
plevensid soit un morphisme a Uordre n + 1 si, et seulement si, S"CI = 0 € H*(T,sl5(C),).

pnt. Alors, il existe une cochaine c,y1 telle que

soit un morphisme a l'ordre n et soit C}! = py, o

Exemple 4.2.13. Si ¢; est un cocycle et p* Iapplication associée qui vérifie la condition de morphisme

d/:tl pr' = c1 soit envoyé sur 0 par &' : HY(T,sl(C),) —

H?(T,sl3(C),) alors il existe 512 =c1 + 2tcg € Z1 (D, gi") avec ¢y € C1(T,513(C),). Autrement dit,

a Pordre 1. Supposons que 1’élément Cf = p; o

e (1Y) + 2te2(vY') = 1 (y) + 2tea () + Adper (4 (1 (7)) + 2tez (7))

En développant & l'ordre 1 I'exponentielle dans I’expression p () = exp(tc1(7))p(y) = (Id +ter (7)) p(y)
et en regroupant les termes par degrés, on obtient la condition de cocycle de ¢; en degré 0 et on obtient

en degré 1 :

—1

2¢2(7) = 22(77') + Ady () (2¢2(7)) = —e1(Np(Ner (v)p(1) ™ + p(1)er(v)p(v) 'er (7)

—[er—c1](vy")

1
On reconnait alors dea(v,v") = —5[01 — ]y, 7).
On peut évidemment continuer les calculs aux ordres supérieurs avec la formule de Campbell-Hausdorff,

voir par exemple [1].

4.3 Variété de caracteres

Comme nous 'avons dit dans I'introduction, nous allons construire dans cette these le champ de
caractéres (voir le chapitre 2 et le chapitre 7). Cette construction n’aurait pas d’intérét si le bénéfice de
la vision champétre par rapport & la construction standard de la variété de caractéres (issue de la théorie
des invariants géométriques) n’était pas important. Nous avons donc besoin de justifier ce choix et de
comparer les deux constructions. Cette section reprend les bases de la théorie des invariants géométriques

et en particulier de la construction de la variété de caracteres.

Avant de donner la construction de cette variété, nous revenons sur les définitions inhérentes a la

théorie des invariants géométriques et donnons quelques exemples qui permettent de motiver cette théorie.

Le lecteur intéressé pourra consulter [80] ou [83].
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CHAPITRE 4 — Représentations, caractéres et variétés associées

4.3.1 Quotients géométriques et catégoriques

Définition 4.3.1. Soit X une variété algébrique muni d’'une G-action, ou G est un groupe algébrique.
Un quotient catégorique de X par G est une paire (Y, @), oi Y est une variété et ¢ : X — Y est un
morphisme G-invariant tel que pour tout autre morphisme G-invariant f : X — Z, il existe un unique
morphisme ¥ : Y — Z tel que f = o ¢.

De plus, si ¢~1(y) est une orbite pour tout y € Y, on dit que (Y, ¢) est un espace d’orbites.

Remarque. Un quotient catégorique n’est défini qu’a isomorphisme pres.

Voici un exemple qui peut servir de motivation & 'utilisation des champs (confer chapitre 7).

Exemple 4.3.2. Soit £ un corps, que nous supposerons de caractéristique 0. Considérons 'action de
GL,, (k) sur M,,(k) par conjugaison. Nous affirmons que la paire (k™,x) avec x : M, (k) — k™ donné par
le polynéme caractéristique est un quotient catégorique.

Faisons-le pour n = 2,k = C, les autres cas n’étant pas beaucoup plus difficiles. Soit
f:My(C) - Z

un morphisme GLy(C)-invariant. Puisqu’il est constant le long de chaque orbite, on peut considérer la

forme de Jordan pour distinguer les orbites et on obtient trois types :

a 0 a 0 a 1
0 g 0 « 0 «
a 1
0 o
ont le méme polynoéme caractéristique. Si on considere

)6 )66 7)

on obtient que f(B;) = f(B1) pour tout t # 0 et donc inévitablement, aussi pour ¢ = 0.

Mais les matrices

Considérons le morphisme p : C? 3 v — C, € My(C) qui associe & un vecteur v la matrice compagnion

associée, on peut construire 'application
v:C—>2Z, v f(Cy)

qui vérifie bien les propriétés d’un quotient catégorique.
Remarque. Le quotient catégorique (K™, x) n’est pas un espace d’orbites. En effet, on a x(Id) = (-2,1)

1 1
et x1(—2,1)) = Oq u Oy ou I = X

Définition 4.3.3. Soit X une G-variété, c’est a dire une variété muni d’une G-action. Un bon quotient

de X par G est une paire (Y, ¢), avec Y une variété et ¢ : X — Y un morphisme surjectif G-invariant tel
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que
e si U est un ouvert de Y, alors
¢*O(U) — O(¢71(V))
est un isomorphisme sur O(¢~1(U))%,
o si W est fermé, alors ¢(W) est fermé,
e si Wy, Wy sont des fermés disjoints de X alors ¢(Wy1) n p(Wa) = .
ou les fermés (resp. ouverts) sont des fermés (resp. ouverts) pour la topologie de Zariski.
De plus, si (Y, ¢) est un espace d’orbites, alors on dit que c’est un quotient géométrique.
Remarque. Les concepts de bons quotients (resp. quotients géométriques) (Y, ¢) sont locaux par rapport
a Y dans le sens ou
e si U est ouvert dans Y alors (U, ¢) est un bon quotient (resp. quotient géométrique) pour ¢~ (U),
e si {U;} est un recouvrement de Y par des ouverts tels que (U;, ¢) est un bon quotient (resp. quotient
géométrique) de ¢~1(U;), alors (Y, ¢) est un bon quotient (resp. quotient géométrique) de X.

Proposition 4.3.4. Un bon quotient est un quotient catégorique.

Exemple 4.3.5. Pour la GLy(C)-variété Ms(C), le quotient catégorique n’est pas un bon quotient

t 0
puisque det n’est pas fermée. En effet, considérons le sous-espace des matrices M; = (0 X ), il est

12
, - [t] st [t] > 1 .
clairement fermé puisque ||M;| = 4] , mais det({M, |t € C*}) =]0, +o0].
Ll sl <1

4.3.2 Quotients affines

Soit X est une G-variété affine. On aimerait avoir un quotient catégorique (Y, ¢) de X par G avec Y
affine. Remarquons que pour un quotient catégorique (Y, ¢), tout morphisme G-invariant f : X — k se

factorise via ¢. En termes algébriques, cela signifie que
9% : O(Y) - O(X)

est un isomorphisme sur les G-invariants O(X)%. Ainsi, Y est affine si, et seulement si, O(X)“ est
finiment engendrée. La question de savoir si O(X)% est finiment engendré dés lors que O(X) lest est
une version du 14éme probleme de Hilbert. un peu plus tard, NAGATA donna un contre-exemple et une

condition suffisante sur G a ce probléme.

Définition 4.3.6. Soit k£ un corps. Un groupe algébrique G est géométriquement réductif si étant donné
une représentation rationnelle (c’est a dire une représentation G — GL,,(k)) de dimension finie V de G

et un vecteur invariant v € V' il existe un polynoéme homogene G, f : V — k tel que f(v) = 1.

Proposition 4.3.7. Si char(k) =0, alors

e tout groupe fini est géométriquement réductif,
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e SL,(k), GL, (k) sont géométriquements réductifs.

Définition 4.3.8. Soit G un groupe algébrique et R une k-algebre. Une action rationnelle de G sur R
est une application R x G — R telle que

* (99)f=9(g9.f)etef=Ff,
e f — g.f est automorphisme de la k-algebre R,

e tout élément de R est contenu dans un sous-espace fini-dimensionel G-invariant sur lequel G agit

par une représentation rationnelle.

Théoréme 4.3.9. NAGATA Soit G un groupe algébrique géométriquement réductif agissant via une re-

présentation rationnelle sur une k-algébre R finiment engendrée, alors RC est aussi finiment engendrée.

Voir [83], par exemple, pour la preuve.

Remarque. En caractéristique 0, la notion usuelle de groupe réductif (c’est & dire, avec radical unipotent
trivial) est équivalent a celle d’étre géométriquement réductif. Comme nous restons dans ce contexte,

nous enlevons le terme "géométriquement".

Théoréme 4.3.10. Soit X une G-variété affine avec G un groupe réductif. Alors, il existe un bon quotient
(Y, ¢) avec Y affine.

Par le théoréme de NAGATA, nous savons que O(X)¢ est finiment engendré et il vient que Spm(O(X)%)

est une variété affine.

Définition 4.3.11. Soient X une G-variété affine et G un groupe réductif. On appelle quotient GIT de
X par G, la variété Spec (k[X]€) et on la note X//G.

Proposition 4.3.12. Soit X une G-variété et (Y, ) un bon quotient. Alors,
o $(x1) = ¢(x2) & Oy, 0 O, # I,

o sila G-action sur X est fermée, c’est & dire que toutes les orbites sont fermées, alors (Y, $) est un

quotient géométrique.

Remarque. Le lecteur familier de la théorie des invariants géométriques de MUMFORD notera que nous
n’aurons pas besoin de la notion de stabilité (resp. semi-stabilité, instabilité) puisque dans la suite, nous
travaillerons avec SL2(C) (un groupe semi-simple) agissant sur la variété des représentations (une variété

affine) dont tous les points seront semi-stables.

4.3.3 Quotient de la variété des représentations

Appliquons les constructions des paragraphes précédents au cas de l'action par conjugaison sur la
variété des représentations. Le théoreme 4.3.10 permet d’affirmer l’existence d’une variété algébrique
affine qui est un bon quotient (munie de I'application naturellement associée & sa construction) pour
laction de SLy(C) sur R(T).

Pour simplifier les notations, cette section se restreint au cas ou le groupe réductif G de la section

précédente est SLo(C). Le lecteur adaptera facilement les définitions/résultats dans un contexte plus
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général. Voici quelques bonnes références au sujet introduit dans cette section : [90], [19], [70] ou encore
[69).
Soit " un groupe finiment engendré. On définit 1’algébre A(T") par

AT) = C[X];,vel, i,je{1,2}]/(det X" = 1, X" X° — X?° avec 7,6 € T)

ot X7 est la matrice (X;';); ;. Notons que 'on a Spec(A(T')) = R(T).
On note traditionnellement X (T') le quotient R(I")// SLa(C) définit par le spectre des SLy(C)-invariants
de A(T'), c’est-a-dire Spec(A(T')S2(©)) = R(T")//SLy(C). On a alors le résultat suivant (voir [71] par

exemple).

Théoréme 4.3.13. Les ensembles suivants sont en bijection :
o les points fermés de X (),
o les SLy(C)-orbites fermées de R(T).

Justifions succinctement le nom de variété de caractéres.

Définition 4.3.14. Soit I" un groupe finiment engendré. Un SLy(C)-caractére de T' est la trace d’une
SLs(C)-représentation :
I -2 SL,(C) 25 ¢

On note x, le caractére de I' associé & la représentation p et Ch(I") 'ensemble des caracteres de I'.

Notons B(T") la sous-algebre de A(T") engendrée par les fonctions linéaires
I' - C, v Tr(X7)
Proposition 4.3.15 ([69, Propositions 1 and 3]). On a les isomorphismes suivants :
B(I) ~ A(T)3%=(©

et
Ch(T") ~ Spec(B(T))

ou lisomorphisme est induit par Uapplication qui envoie x, sur 7,(7) = X,(7)-
Dont on déduit immédiatement.

Corollaire 4.3.16. On a l’isomorphisme suivant :
Ch(l') ~ X(T")

Remarque. Méme si ce n’est pas logiquement nécessaire pour la suite, on peut introduire l’algebre de
Skein.

Considérons 'algebre
S(I') =C[X,, ye S/(X1a — 2, X5 + Xy Xs-1 — X, X55), avec 7,0 € 5)
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ou S est une partie (finie) génératrice de I'. Il découle de la célébre relation
Tr(AB) + Tr(AB™ 1) = Tr(A) Tr(B), VA, B € SLy(C)
un isomorphisme entre A(T") et S(T).

Exemple 4.3.17. Reprenons ’exemple de I' = Z. Considérons G un groupe réductif, T un tore maximal
de G et W le groupe de Weyl de G. On a [91, Corollaire 6.4]

T/W — X(Z)

est un isomorphisme.
Dans le cas de G = SLy(C), on se retrouve dans une version légeérement adaptée de I'théoréme 4.3.2.

A conjugaison prés, un tore maximal de SLy(C) est donné par

T{(O 0) c}

et le groupe de Weyl W dans SLy(C) de ce tore est donné par le quotient du normalisateur de T dans

SLs(C) par T. On obtient aprés calcul que le groupe de Weyl est le sous-groupe (isomorphe a Z/27) de

0
SL2(C) obtenu comme quotient du groupe engendré par N par le centre de SLo(C). Le groupe

de Weyl agit sur T en permutant les valeurs sur la diagonale. On obtient finalement que
C*/ ~= X(2)
ot z ~ z~!. L’isomorphisme est naturellement donné par z — 7, avec 7,(1) = z + 27 1.

On rappelle qu’'un sous-groupe H d’un groupe G est dit complétement réductible si pour tout groupe
parabolique P c G contenant H il existe un groupe de Levi L ¢ P contenant H. Lorsque GG est un groupe
réductif, on a [90, Proposition 8] que H est un sous groupe complétement réductif dans G si, et seulement
si, sa cloture de Zariski est un sous-groupe linéaire réductif. On dira par la suite qu’une représentation
est complétement réductible si son image est un sous-groupe complétement réductible de G.

Pour caractériser le lieu poly-stable, on peut utiliser le théoréme suivant :

Théoréme 4.3.18 (SIKORA, [90, Theorem 30]). Soit p € R(T'). Alors O(p) est fermée si, et seulement

si, p est complétement réductible.

Exemple 4.3.19. Dans ’exemple précédent, puisque toutes les représentations sont abéliennes, toutes
ont un stabilisateur de dimension au moins 1 et aucun point n’est stable au sens de [80]. Prenons ’exemple
du groupe libre & deux éléments Fs. Il est connu, par un théoréme de FRICKE (voir [90] par exemple),

que la variété de caracteres X (F) est isomorphe a C? via application suivante :
(A, B) € SLy(C) x SLy(C) ~ Hom(F,, SLy(C)) — (Tr(A), Tr(B), Tr(AB)) € C3
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De maniére plus générale, on peut montrer par exemple que X (F}.) est une variété, ou F,. est le groupe

libre a r éléments.

Les variétés de représentations et de caractéres ont été largement étudiées, en particulier, voici quelques
références sur les propriétés algébriques de celles-ci. [69], [68], [70], [47], [36], [14], [90].

Ces variétés apparaissent, comme nous le verrons dans cette thése (confer chapitre 7), dans de nom-
breux problemes de modules de structures géométriques ainsi que dans des problemes de modules de
connections plates, ou des fibrés de Higgs. Le cas des structures hyperboliques sur les surfaces a notam-
ment été traité, entre autre, dans [34], [35], [33], [49], [39].

Pour un apergu plus complet de I’étendue des travaux dans d’autres domaines, voir [90, §11. Character

varieties].

Remarque. A notre connaissance, le lien entre variété de caractéres et sa version champétre n’est pas

encore bien documenté. On peut cependant citer [98] concernant les "derived character varieties'.
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CHAPITRE b

STRUCTURES COMPLEXES DES ESPACES
HOMOGENES DE SLy(C)

OUS ABORDONS MAINTENANT LE PRINCIPAL SUJET de cette these, celui des déformations de struc-
N tures complexes des quotients compacts de SLo(C) par des sous-groupes discrets. Nous 'avons
mentionné dans U'introduction, ce sont les travaux de GHYS [31] qui ont, entre autre, permis d’explici-
ter les espaces de Kuranishi de ces quotients. Le principal objectif de ce chapitre est donc de revenir
sur les résultats de cet article. En particulier, nous verrons comment 'auteur compare les déforma-
tions de la (SL2(C) x SLy(C), SLa(C))-structure naturelle des quotients SLa(C)/T" en utilisant le principe
d’Ehresmann-Thruston avec les déformations de la structure complexe de ce quotient. Nous reviendrons
dans le méme temps sur les théorémes de rigidité de Weil et de Mostow qui caractérisent ’holonomie de
la (G, X)-structure sur SLo(C)/I". Nous profiterons de ce chapitre pour discuter du premier nombre de

Betti de I' qui permet de donner des renseignements sur la « complexité »de la variété des représentations.

Nous donnerons dans une deuxieme partie les calculs de certains groupes d’automorphismes des va-
riétés obtenues par déformation de SLy(C)/T'. En particulier, nous aurons besoin du calcul du groupe
Aut'(SLy(C)/T) (défini dans le chapitre 2) correspondant au groupe d’isotropie dans le champ de Teichmiil-

ler.

Avant de revenir sur les résultats soulignés dans cette introduction et qui motivent cette thése, nous
donnons rapidement le lien entre ces quotients et les variétés hyperboliques de dimension 3. Cette relation

a des intéréts multiples :
e clle nous renseigne sur la géométrie des quotients SLy(C)/T,

e clle justifie I'intérét de ces travaux par I’'abondance d’exemples grace au théoreme d’hyperbolisation
de THURSTON [96],

e la cohomologie des quotients SLy(C)/T" est largement liée & celle de H?/T.
Elle permet en outre de justifier pleinement le nom donné a cette these.
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CHAPITRE 5 — Structures complezxes des espaces homogénes de SLo(C)

5.1 Variété hyperbolique de dimension 3 et son fibré de repeéeres

On rappelle que H? est 'espace hyperbolique définit par
H? = {(2,t) € C x R|t > 0}

muni de la métrique de Poincaré. Son bord 0H? = {t = 0} u{oo} s’identifie & la sphere de Riemann Cu {00},
L’action du groupe PSLy(C) sur la sphére de Riemann par transformations de Mobius s’étend contintiment
en une action sur H3 de la facon suivante. Les transformations normales sont des cas particulier de

transformations de Mobiiis et sont données par
mp:z—z+1, et mp:z—kz, 1#£keC

Toute transformation de Mobiiis est conjuguée a une transformation normale et on peut donc se res-

treindre a étendre ces dernieres, ce que 1'on fait en posant
f1:(z,t) = (m1(2),t), et fr:(z,t) = (mp(2),|k|t)

De plus cette construction d’isométries de H? donne une bijection entre Isom (H?) et PSLy(C). Pour
obtenir le groupe Isom(H?) tout entier, il faut aussi considérer I'isométrie induite par I'isométrie z — Z
du bord de H? qui renverse I'orientation.

Soit M une variété et m : E — M un fibré vectoriel de rang n. Au dessus de chaque point x € M,

on note GL(E,) ensemble des bases ordonnées de E, := 7~ !(z). L’ensemble GL(E) := |_| GL(E,) est
xeM
donc ’ensemble des couples (z, B) avec x € M et B € GL(E,) et est donc muni d’une projection naturelle

' :GL(E) > M, (x,B)—x
De plus, si ¢ : 77 1(U) — U x R™ est une trivialisation locale de E alors,
7/] : Wlil(U) —U—-U x GLn(R)a (LE,B) = (xv¢(b1)a T a¢(bn))

ou B = {by, - ,b,}, est une trivialisation de GL(FE). On remarque que pour tout € M, GL,(R) agit
sur GL(E,) par multiplication & gauche de fagon libre et transitive. Ainsi, GL(E) est un GL, (R)-fibré

principal.

Définition 5.1.1. Soit M une variété et m : E — M un fibré vectoriel de rang n. Le fibré GL(E) - M
est appelé fibré des repéres de E.

De la méme fagon, si £ — M est un fibré vectoriel de rang fini muni d’une métrique, c’est-a-dire muni
d’une application
k:FE X M E—-> M xR

tel que sa restriction en chaque fibre soit une application bilinéaire non-dégénérée, on pose O(FE,) l'en-

semble des bases orthonormés pour k|r1(x) et on peut définir 7’ : O(E) := |_| O(E,) — M le fibré des
xeM
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reperes orthonormés de E. De la méme fagon, on peut que pour le fibré des repéres, on peut trouver une
trivialisation de ce fibré.

Si de plus, le fibré E — M est orienté, on peut encore considéré le fibré SO(E) = |_| SO(E,) —

xeM
M, ou SO(E,) est 'ensemble des bases orthonormées directes de E,. On I'appelle le fibré des repéres

orthonormés directs de F.
Remarquons que les fibrés SO(E) et O(F) ne dépendent que (& isomorphisme prés) de la signature
(p,q) (avec p + ¢ = rk(E)) de la métrique k.

Définition 5.1.2. Soit M un variété riemannienne. On appelle fibré des repéres (resp. fibré des repéres
orthonormés de M) le fibré GL(M) (resp. O(M)) des reperes de TM (resp. fibré des repéres orthonormés
de TM muni de la métrique riemannienne). Si de plus M est orientée, on appelle fibré des repéres
orthonormés directs de M le fibré SO(M) des reperes orthonormés directs de T'M.

Avec les rappels précédents, on voit que PSLy(C) ~ Isom, (H?) agit transitivement et simplement
sur SO(H?), on a donc SO(H3) ~ PSLy(C). Soit V une variété hyperbolique fermée de dimension 3,

c’est-a-dire revétue par H?, on a alors le diagramme commutatif suivant :

PSL,(C) PSL, (C)/mi (V)

T ))/

SO(H3) —— SO(H?/my (V

| |
/H T

PSU(2)\ PSL(C) PSU(2)\ PSLy(C)/m (V)

D’ou finalement, SO(V') ~ PSLy(C)/m1 (V).
Par ailleurs, on a le résultat de THURSTON :

Théoréme 5.1.3 (THURSTON, [97]). Soit M une variété hyperbolique fermée de dimension 3. Alors la
représentation de w1 (M) dans PSLy(C) peut étre relevée a SLa(C).

Remarque. L’ensemble des relevés de T' & SLo(C) est en bijection avec Hom(T', Z/27Z) ~ (Z/QZ)I’I(F) et
correspond aux classes d’équivalence de structures spinorielle sur H?/T" classifiée par H*(H3/T") (puisque

toute 3-variété est spin).

On dispose donc d’un isomorphisme [ : 71 (M) — I" < SLy(C) et on peut alors considérer la variété
SL2(C)/T. La variété SLa(C)/T est donc un double revétement (revétement spin) du fibré des repéres
orthonormés de la variété hyperbolique H3/T". Puisque cette variété est revétue par H®, c’est en particulier
un espace d’Eilenberg-Maclane K (I', 1) et la cohomologie a coefficients entiers de cette variété coincide
avec celle de T" :

H"(H3)T,Z) ~ H"(T',Z), n=>0

Par ailleurs, nous ’avons vu, puisque SLy(C) est Stein, la cohomologie du quotient SLy(C)/T est reliée

a celle de T', plus précisément :
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CHAPITRE 5 — Structures complezxes des espaces homogénes de SLo(C)

Proposition 5.1.4. Soit M une variété hyperbolique fermée de dimension 3 et I' € PSLy(C) une repré-
sentation de son groupe fondamental (correspondant d la structure hyperbolique). Alors, on a les isomor-

phismes suivants :

H(SLy(C)/T) ~H"(T), i =0,1,2
H'(SLy(C)/T) ~H"3(T), i = 4,5,6

Démonstration. Soit I' un relevé de T'. La variété SLy(C)/T" est homéomorphe a SU(2) x H3/T. En par-

ticulier, la formule de Kiinneth nous donne

H"(SLo(C)/T) ~ (@ HP(H/T) ® HI(SU(2))

p+q=n

mais puisque SU(2) est la sphére de dimension 3,

R, siqg=0,3
H(SU(2)) =
0 sinon.

On a alors le résultat annoncé. O

5.1.1 Théoremes de rigidité

Deés que 'on se donne un groupe discret co-compact I' dans SLy(C) sans torsion, on peut reconstruire
une variété hyperbolique fermée de dimension 3 via H?/p(T") (ol p : SL2(C) — PSLy(C) est la projection
naturelle). De plus, cette correspondance entre sous-groupes discrets co-compacts sans torsion de PSLy(C)

et les 3-variétés hyperboliques fermées est essentiellement unique par la célebre rigidité de Mostow :

Théoréme 5.1.5 (Rigidité de MosTow (forme algébrique), [78]). Soient T';, i = 1,2, deuz sous-groupes
discrets co-compacts de PSLa(C) isomorphes. Alors, lisomorphisme entre I'y et I'y s’étend en un auto-

morphisme continu de PSLy(C).

En particulier, le résultat s’applique lorsque G = SO(n, 1), n = 3 et on obtient la formulation géomé-

trique suivante :

Théoréme 5.1.6 (Rigidité de MosTOW (forme géométrique), [78]). Soient M et N deux variétés hyper-
boliques de dimension n = 3. Tout isomorphisme w1 (M) — 71 (N) provient d’une unique isométrie entre
M et N.

Remarque. Lorsque le quotient d’un groupe de Lie G par un sous-groupe discret I' a une mesure de Haar
finie, le groupe I' est appelé un réseau de G. Le théoreme de de rigidité de Mostow a été généralisé au
cas des réseaux irréductibles par G. PRASAD [85].

Dans le cas qui nous intéresse, puisque SLy(C) n’a pas un centre trivial, on peut appliquer la rigidité

de Mostow & SLy(C) en projetant sur PSLy(C) et en relevant ensuite.

Lemme 5.1.7 (DIEUDONNE, [23]). Les automorphismes extérieurs de PSLa(C) sont, d conjugaison prés,

soit lidentité soit la conjugaison compleze.
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5.2. (SL2(C) x SL2(C), SL2(C))-structure des quotients

On obtient alors le corollaire suivant :

Corollaire 5.1.8. Si ¢ est un isomorphisme entre deux sous-groupes de SLo(C) discrets et co-compacts
Iy et Ty alors il existe un morphisme de groupes € : T'y — +{Id} et un élément g € SLy(C) tel que ¢ soit

donné par

¢p=c1y:T1 > T ye(y)gyg™

ou par

p=cug:T1—>Ta v—e(y)gyg"

ou 7y désigne la conjugaison complexe de ~y.

On peut aussi déduire la finitude du groupe des difféotopies. Notons N (I") le normalisateur de I" dans
SLo(C), c’est-a-dire
N(T) :={geSLy(C) |gTg~" =T}

Corollaire 5.1.9. Soit I' le groupe fondamental d’une variété hyperbolique M de dimension 3 de volume
fini. Le groupe des automorphismes extérieurs Out(I') = N(I')/T de T' est isomorphe au groupe des

isométries de M.

Proposition 5.1.10 ([7, Theorem C.5.6]). Soit T le groupe fondamental d’une variété M hyperbolique

connexe orientée et compacte, alors Out(T) est un groupe fini.

On a aussi le théoreme de Mostow-Weil concernant la rigidité locale des représentations discrétes et
fideles.

Théoréme 5.1.11 (WEIL, [105]). Soient G un groupe de Lie connexe semi-simple sans facteur compact
et I' € G un réseau uniforme, on note i : I' — G le plongement de T dans G. Si G n’est pas localement
isomorphe & SLa(R), alors le plongement i est rigide, au sens ou tout morphisme suffisamment proche
de i sera i lui méme. Plus précisément, on a H*(T,g) = 0 (ot la structure de T-module est donnée par
Ad,; ).

Dans le contexte évoqué dans la sous-section précédente, on peut déduire que le relevement de la

représentation | de m1 (V) dans SLa(C) est rigide.

Remarque. Le cas exceptionnel de SLo(R) provient des déformations des surfaces de Riemann hyperbo-
liques. Notons que la condition de co-compacité joue un réle tres important. Dans le cas d’'un réseau
non co-compact de SLy(C), les résultats de THURSTON sur la chirurgie hyperbolique de Dehn utilisent la

non-rigidité.

5.2  (SL2(C) x SLy(C), SLy(C))-structure des quotients

Soit M une variété complexe. Nous appellerons fibré tangent (resp. cotangent) holomorphe de M le
fibré TYOM (resp. (TOM)*) et nous le noterons plus simplement TM (resp. T*M) lorsqu’il n’y aura
pas d’ambiguités. De la méme fagon le fibré tangent (resp. cotangent) anti-holomorphe de M est le fibré
TOYM (resp. (TO1M)*).
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CHAPITRE 5 — Structures complezxes des espaces homogénes de SLo(C)

Définition 5.2.1. Soit M une variété complexe. Une métrique riemannienne holomorphe g sur M est une

section globale holomorphe du fibré S2(T* M) des 2-tenseurs symétriques de T* M partout non-dégénérée.

Une métrique riemannienne holomorphe peut-étre vue comme 'analogue complexe d’une métrique
riemannienne et on peut définir des géodésiques, une connexion de Levi-Civita, un tenseur de courbure
etc. Le lecteur pourra consulter les articles de BiIswAs, DUMITRESCU ou ZEGHIB sur le sujet, par exemple
[26], [12].

Fixons maintenant et pour le reste de ce chapitre un sous-groupe discret I' = SLy(C) co-compact, que
'on supposera sans torsion et notons M le quotient SLy(C)/T.

On sait d’aprés la théoréme 3.2.3 qu’une structure géométrique sur SLo(C) invariante & droite descen-
dra au quotient M. Par ailleurs, ce quotient est holomorphiquement parallélisable, c¢’est-a-dire que son
fibré tangent est isomorphe & M x sl3(C) ot sl2(C) est I’algebre de Lie de SLy(C) considérée comme ’al-
gebre des champs de vecteurs invariants par translation & droite sur SLo(C). On déduit alors qu’une forme
quadratique sur sl (C) permettra de définir une métrique holomorphe. En particulier, sla(C) posséde une

forme quadratique bi-invariante : la forme de Killing K. Elle est définie par
K(x,y) = Tr(ad(z) o ad(y)) = 4 Tr(zy)

Cette forme est non-dégénérée (équivalent a la semi-simplicité de sly(C) via le critere de Cartan) et elle
permet donc de définir une métrique riemannienne holomorphe sur M. La connexion de Levi-Civita,
les géodésiques et le tenseur de courbure de cette métrique sont rappelés dans [31], rappelons quelques

éléments ici qui nous seront utiles :

Proposition 5.2.2 (GHYS, [31]). Soient z,y € slo(C). On note encore K la métrique riemannienne
holomorphe sur SLa(C) induite par la forme de Killing.
o la courbure sectionnelle de K est constante et non nulle (sa valeur dépend du choix fait pour définir
K),
e [es géodésiques passant par 1d sont les sous-groupes d un paramétre,

o laction du groupe SLo(C) x SLa(C) sur SLy(C) par multiplication & gauche et d droite est isomé-

trique.

Remarque. Notons que 'action de SLy(C) xSLy(C) sur SLy(C) n’est pas fidéle puisque I’élément (— Id, — Id)
agit trivialement. Il faudrait donc remplacer SLs(C) x SLy(C) par (SLy(C) x SLo(C)) / £ (Id, Id).

L’intérét de ces définitions et remarques tient a la proposition suivante :

Proposition 5.2.3. Toute variété complexe de dimension 3 munie d’une métrique riemannienne holo-
morphe d courbure constante non nulle est localement isométrique a SLo(C) muni d’un multiple de la

métrique de Killing. En particulier, une telle variété admet une (SLa(C) x SLa(C), SLy(C))-structure.

Pour des détails sur ce résultats, voir par exemple [26].

En particulier, les variétés du type SLy(C)/T sont naturellement munies d’une (SLa(C) x SLy(C), SLy(C))-
structure compléte donnée par les multiplications & gauche et & droite sur SLo(C) dont ’holonomie est
simplement donnée par

h:T — SLy(C) x SLy(C), ~— (Id,7)

90



5.8. Espaces de Kuranishi des espaces homogénes de SL2(C)

Remarque. Puisqu'il existe des 1-formes invariantes a droites non-fermées sur SLy(C), les variétés SLo(C)/T'

ne sont pas des variétés kihlériennes. On peut aussi remarquer qu’elles ne sont pas symplectique (voir
[31]).
5.3 Espaces de Kuranishi des espaces homogeénes de SLy(C)

Nous nous intéressons maintenant aux déformations de la structure complexe de SLy(C)/T". Les rappels

précédents peuvent étre résumés dans le schéma suivant :

(G x G, G)-structure, Admet une
d’holonomie — [SLOT | ——— structure complexe
\
Principe Théorie de

d’EHRESMANN THURSTON
KODAIRA | SPENCER

Déformations
, données par G-conjugaison A Déformations de la
By = (p(7),m(7) ut structure complexe

|
Rigidité de
MoSsSTOW i WEIL

Complétude
Réduction au cas par (G xG, G)—ﬁ‘iructure _ Quotients
Wy = (p(7),7) Tl de SLy(C) par h'(T)
THOLOZAN olonomie

FIGURE 5.1 — Schéma d’obtention de nouvelles structures complexes

Remarque. L’action de I' définie par I’holonomie

B’ :T — SLy(C) x SLy(C), v~ (p(7),7)

est donnée par
[ x SLy(C) — SLy(C), (v, 2) = p(v) 'z

Dans toute la suite, on notera M, ces quotients. Et comme précédemment, nous désignerons par R(I")
la SLo(C)-variété des représentations de ' et par R(T")® le sous-espace de R(T") formé des représentations
admissibles.

A partir de 1a, GHYS montre que

e les déformations de structures complexes s’obtiennent toutes par ce principe [31, Théoréme A],

e les orbites de la conjugaison par G sur la variété des représentations correspondent aux automor-

phismes des variétés correspondantes [31, Théoréme B.

Et il obtient :
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Théoréme 5.3.1 (GHYS, [31, Théoreme A]). L’espace de Kuranishi de M est donné par le germe de la

variété des représentations R(T') pointée au morphisme trivial pg.

Remarque. 11 faut bien considéré la variété de représentation et non pas la variété de caractéres. En
effet, certaines orbites de représentations non-triviales peuvent s’accumuler sur pg et ne seront alors plus
distinguer dans le quotient GIT (voir la théoréme 4.3.12). Or, ces représentations donnent lieu a des

variétés non-biholomorphes.

Le théoreme 5.3.1 n’aurait pas d’intérét si il n’existait pas de représentations admissibles proches de

la représentation triviale. Pour justifier de la pertinence de ce résultat, GHYS montra le lemme suivant :

Lemme 5.3.2 (GHYS, [31, Lemme 2.1]). Soit p une représentation suffisamment proche de la représen-

tation triviale po : I' — 1d, alors p est admissible et la variété M, est C*-difféomorphe & M.

Nous 'avons vu dans le chapitre 3, ce lemme a été largement généralisé, entre autre, par les travaux
de KAsseL. Remarquons aussi que deux représentations conjuguées par un élément de SLo(C) sont
simultanément admissibles ou non-admissibles.

Nous pouvons réécrire le théoreme 3.3.8 avec ces notations de la fagon suivante :
Corollaire 5.3.3 (KASSEL, [50]). Le sous-espace R(I')® est ouvert dans R(T).

Signalons aussi le résultat de GHYS concernant les tenseurs holomorphes sur M. Pour cela, rappelons
quelques faits.

On appelle parallélisme sur une variété M une trivialisation globale du fibré tangent de M. La donnée
d’un parallélisme sur une variété permet alors de définir uniquement une connexion plate du fibré tangent
de cette variété. Les champs de vecteurs paralleles pour cette connexion correspondent aux champs
de vecteurs dont les coordonnées (dans un champ de repéres associé au parallélisme) sont constantes.
Réciproquement, la donnée d’une connexion plate sur le fibré tangent d’une variété M et d’une base
d’un espace tangent T, M pour un certain x € M définit un parallélisme. Dans le cas de SLo(C) (plus
généralement dans le cas d’un groupe de Lie), 'algébre de Lie des champs de vecteurs invariants & droite

(resp. & gauche) permet de définir une connexion plate V¥ (resp. V9).

Remarque. La connexion de Levi-Civita de la métrique de Killing est la moyenne des connexions V¢ et
V9.

Cette connexion est bi-invariante et descend donc au quotient M, et permet d’identifier le fibré
tangent T M, de M, au fibré (SLy(C) x sl5(C))/T" ou I'action est donné par les transformations de deck,

c’est-a-dire par :

I' x SLQ((C) X 5[2(@) —> SLQ(C) X 5[2(((:)

(7, (@, 0) — (
) — (

(")
(resp. (v, (z,v ( )71x7,Ad7(v))) (5.2)

La connexion V7 (resp. V9) permet alors d’identifier le fibré tangent de M, au systéme local sl5(C),,
(resp. sl3(C); ot i : T' — SLy(C) est U'inclusion).
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Soit ¢ : GL3(C) — GL,,(C) une représentation linéaire. On considére le fibré associé a o, que P'on

note 77 (M), obtenu comme quotient de SLy(C) x C™ par 'action
I x SLy(C) x C" — SLy(C) — C", (7, (x,v)) = (p(7) "2, (0 0 Adop(y™1))(v))

On appelle o-tenseur holomorphe toute section holomorphe de 77 (M,).

Théoréme 5.3.4 (GHys, Théoreme 5.3 [31]). Tout o-tenseur holomorphe sur M, se reléve a SLa(C)

en un tenseur invariant d droite par SLy(C) et 4 gauche par p(T).

Remarque. Dans le théoréme précédent, on a méme un peu mieux [lemme 5.1]Ghys : tout o-tenseur

holomorphe sur M, se releve & SLy(C) en un tenseur invariant & gauche par la cléture de Zariski de p(T").

En particulier, on voit que pour ¢ = Id, T?(M,) = T M, et les Id-tenseurs holomorphes sont donc

les champs de vecteurs holomorphes.

Proposition 5.3.5 (GHYs, Corollaire 5.4 [31]). Soit p e R(I')%, alors
H(M,,0,) ~ sly(C)*")

ot sla(C)H est le sous-espace des H-invariants de slo(C) (pour Uaction adjointe).
En particulier, si on note h*(p) = dim H*(M,,0,), on a

Corollaire 5.3.6 (GHYS, [31]). Soit pe R(T')?, alors
e Si l’image de p est contenue dans le centre de SLo(C), alors h°(p) = 3,

e si l’image de p est abélienne mais non contenue dans le centre de SLa(C), alors h%(p) = 1,

e dans les autres cas, h°(p) = 0.

5.3.1 Premier nombre de Betti

Remarquons que si la représentation triviale py est un point isolé de la variété des représentations, le
théoreéme 5.3.1 affirme que la variété SLo(C)/T est rigide au sens ou toute déformation de sa structure
complexe est localement triviale. Remarquons par ailleurs que la construction de WEIL (voir le théo-
réme 4.2.7) implique que l'espace tangent & R(I') au point py est isomorphe au groupe H'(T',sl3(C)) (la
structure de I'-module de s5° est triviale). Le théoréme des coefficients universels appliqué a ce groupe
affirme que

dim H*(T, sl5(C)) = dim H*(T, C) ® sl3(C) = 3dim H'(TI",C) = 3b;(I")

ot b1 (T") est le premier nombre de Betti de I" (le rang de 1'abélianisé de I"). En particulier :

Proposition 5.3.7 (GHYs [31]). Si b (') = 0, alors py est un point isolé et réduit de R(I") et M, est

rigide.
Par ailleurs, nous avons le résultat suivant :

Proposition 5.3.8 (GHYS Théoréeme 6.3 [31]). Si b1(T") = 1 alors toute représentation suffisamment

proche de la représentation triviale est a image abélienne.
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On obtient alors le corollaire suivant :

Corollaire 5.3.9. Si b (I") = 1 alors la composante connexe (de Zariski) dans R(T') de la représentation

triviale est composée uniquement de représentations a images abéliennes.

Démonstration. Notons R(I')? la composante connexe de po. La proposition précédente affirme qu’il
existe un voisinage ouvert de py ne contenant que des représentations abéliennes (c’est-a-dire & images
abéliennes). Or la condition d’étre abélien pour une représentation s’exprime sur un systéme de généra-

teurs de I' et est une condition Zariski fermée. O

Remarque. Le cone quadratique tangent & R(I") est déterminé par les zéros du cup-crochet
[—]:HYM,0) x HY(M,0) - H*(M,O)

et puisque H'(M,0) ~ HY(M,C) ® slz(C), cette forme s'écrit [c; @ X1 — c2a @ X2] = ¢1 — 2 ®
[X1, X2]. Comme il est remarqué dans [31], les tenseurs élémentaires ¢ ® X sont isotropes pour cette
forme quadratique et par conséquent le cone quadratique tangent ne dépend que de la structure de
I'anneau de cohomologie rationnelle de la variété V ~ H3/T' qui est complétement décrit par sa forme
d’intersection

HY(V,Q) x H'(V,Q) x H'(V,Q) - Q

c’est-a-dire, par une forme tri-linéaire alternée sur un espace de dimension by (T").

Signalons aussi dans cette section que le cas by (I") = 0 est particulier. En effet, le complémentaire
de R(I")* dans R(T") contient ouvert définit par les représentations p tels que Lip(p) > 1, qui est non-
vide dés que la variété de caractére est non-compacte. Puisque cette variété de caractere est une variété
affine complexe, elle ne sera compacte que si c’est un ensemble fini. Donc, 'ouvert des représentations
admissibles ne sera jamais ouvert pour la topologie de Zariski sauf lorsque la variété de caractere est un
ensemble fini, ce qui correspond au cas b1(I') = 0. Je remercie N. THOLOZAN pour m’avoir fait cette
remarque.

Enfin, ce paragraphe justifie, au moins partiellement, la difficulté des calculs explicites dans les cas

b1(T) = 2 et en particulier, il justifie le choix des exemples & la fin de cette these.

5.3.2 Difféomorphismes entre les variétés M,

Nous profitons des énoncés précédents pour donner une caractérisation des variétés M, qui nécessite

l'utilisation d'une fonction (i, p)-équivariante :

Proposition 5.3.10 (Proposition 7.2 [42]). Pour tout p € R(I)*, la variété Mgiﬁ (la variété différen-
tiable sous-jacente & M,) est homéomorphe a un fibré sur H3/T' de fibre SU(2) et de groupe structural
SU(2) x SU(2).

Meéme s’il n’est pas utile de redonner la preuve ici, cela a ’avantage d’étre instructif et d’exhiber le

lien entre la géométrie de ces quotients et la constante minimale de Lipschitz.
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Démonstration. Par le théoréme 3.3.7 on sait qu’il existe une application f : H?® — H® qui soit k-

Lipschitzienne et (i, p)-équivariante, avec k < 1. Pour tout p € H?, posons

Ly, = {g € SL2(C)|g.p = f(p)}

Un élément g € SLy(C) appartient & £, si, et seulement si, p est fixé par g=! o f. Mais comme f vérifie

Lo f. Un tel point fixe existe et est donc unique et un élément

Lip(f) < 1 il en va de méme pour g~
g € SLy(C) appartient donc & un unique £,. On considere l'application II : SLy(C) — H? qui & un
élément g € SLy(C) associe le point p tel que g € £,. Cette application est continue et vérifie la condition
d’équivariance induite par celle de f :

P(’Y)Epvil =Lyp
et descend donc en une fibration de M, sur H3/T.
On peut voir que les fibres de cette fibration sont de la forme g SU(2)h avec g, h € SLo(C). On peut
donc canoniquement les identifier & SU(2) modulo laction du stabilisateur de SU(2) dans SLy(C) x
SL2(C) (agissant par multiplication & gauche et & droite). On a donc bien SU(2) x SU(2) comme groupe

structural. O
En adaptant cette preuve a notre contexte, nous obtenons alors :
Corollaire 5.3.11. Pour toute représentation admissible p, la variété M, est C* difféomorphe a SLy(C)/T.

Démonstration. On consideére la variété N, définit par le quotient de PSLy(C) sous laction

I' x PSLy(C) — PSLy(C),  (v,2) — p(p(y) Hzp(7)

ou p : SLy(C) — PSLy(C) est la projection naturelle. On sait par la proposition précédente, que ces
variétés A, sont homéomorphes & des fibrés sur H3/I" de fibres PSU(2) ~ RP? et de groupe structural
PSU(2) x PSU(2) ~ SO(4)/{+1d}. Par annulation de la seconde classe de Stiefel-Whitney du fibré

N, — H3/T (la variété H?/T est compacte, fermée et orientée), on a alors un double revétement M, — N,

—_—

qui induit une extension du fibré N, — H?/T" en un fibré M, — H?/T de fibre PSU(2) = SU(2) et de
groupe structural SU(2) x SU(2) ~ Spin(4). Soit {U,} un recouvrement ouvert de H3/T" trivialisant le
fibré M, — H3/T et c := {cap}

cap : Ua N Ug — Spin(4)

le cocycle définissant ce fibré.
Considérons Adgpin(4) (M) le fibré principal associé¢ au fibré M, — H?3 /T, c’est-a-dire le fibré d’espace
total définit par quotient de
T := |_| U x Spin(4)

par la relation d’équivalence
(@,y) ~ (v, cap(x)y), €UanUp, yeSpin(4)
Puisque 71 (Spin(4)) = m2(Spin(4)) = 0, B Spin(4) est 3-connexe. On sait par ailleurs [77, p.6] qu’une
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application f: X — Y d’un espace X de dimension n vers un espace Y m-connexe est homotopiquement
triviale. On en déduit donc
[H3/T, B Spin(4)] = 0

ou l'on note [X,Y] 'espace des classes d’homotopie de fonctions continues de X dans Y. On déduit
que Adgpin(a)(M,) est un fibré trivial. Or, la construction du fibré principal associé est une construction
qui descend aux classes d’équivalences de fibrés donc le fibré original M, — H3/T" est lui aussi trivial.
Finalement, on obtient que I'espace total M, est difféomorphe a H3/T" x SU(2) ~ SLy(C)/T. O

Remarque. En partant dans I'autre sens et en considérant des représentations (p’,i’) € Hom(I', PSLy(C))?,

'extension de la fibration PSU(2) — N, — H3/T" en une fibration de fibres PSU(2) = SU(2) est équiva-

lente aux conditions suivantes (voir [5]) :
o m(PSU(2)) — m1(N,) est injectif,
e T (N,) — 71 (H?/T) admet un inverse.

Par construction, la premiére condition est vérifiée et la deuxieme est équivalente a l’existence d’une
application (p,i) € Hom(T, SLy(C))? qui reléve (p',4’). Puisque I est le groupe fondamental d’une 3-variété
hyperbolique, 'application i, que I’on suppose toujours injective a image discrete, ce releve toujours a
SLy(C) par le théoréme 5.1.3. On est donc ramené a la question de savoir si p’ se reléve, ou de fagon
équivalente si son cocycle associé ¢, € H?(I', 1 (PSL2(C))) représente la classe triviale. Mais ce cocycle
est la seconde classe de Stiefel-Whitney du fibré N, — H3/T" est toujours nulle et on conclut que fibré

s’étend toujours.

5.4 Groupes d’automorphismes des variétés M,

La proposition suivante affirme que les biholomorphismes de M, n’apparaissent que dans les cas

« triviaux »donnés par la conjugaison et les automorphismes de T'.

Proposition 5.4.1 (GHYS, [31]). Soient p et n deux représentations admissibles. Alors M, et M,, sont
biholomorphes si, et seulement s’il existe g, h dans SLy(C) et e € Hom(T', {£1d}) tels que e..p(T') =T et

e(7).gn(1)g~" = ple(Vh(y)h "), ¥y eT

Sans redonner les détails présents dans [31], donnons la stratégie de la preuve. On reléve le biholo-
morphisme entre M, et M,, au revétement SLy(C) en un biholomorphisme ®. Quitte & composer ¥ par

une conjugaison interne, la condition d’équivariance sur ® s’écrit alors :

U(p(y) tay) = n(y) " (x)y

L’auteur montre qu’une fonction qui vérifie cette condition d’équivariance pour cette SLy(C) x SLa(C) x
SLy(C)-action (restreinte au groupe I' == {(p(),1n(7),7) | 7 € T'}) doit la satisfaire sur la cloture (de
Zariski) de I' et montre que cette cloture contient {Id} x {Id} x SLy(C). Il en déduit alors que ¥ est une
fonction qui commute aux translations a droite et est donc une translation a gauche ce qui conclut alors

la preuve.
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5.4.1 Automorphismes des variétés M,

Un ingrédient essentiel dans la suite est la compréhension des groupes d’automorphismes des variétés
complexes M.
Soit ¢ un automorphisme de M,. On notera dans la suite 5 le relevé de ¢ au revétement universel.

Nous commengons un corollaire de la théoreme 5.4.1 :

Corollaire 5.4.2. Si ¢ est un automorphisme de M,, alors il existe g et § dans SLo(C) tels que (Z =
Lgo Rs.

Démonstration. Pour la démonstration de ce lemme, on utilise un cas particulier du théoréme B de [31].
Soit p € R(I')® et soit ¢ un automorphisme de M. Cet automorphisme se reléve en un biholomorphisme
& de SL5(C) tel qu'il existe 6 € Aut(T') tel que

~ ~

o(y . z) =0(7) . ¢(x), Vyel.

Puisque SLy(C) a un centre non trivial égal & {+1d}, on applique le théoréme de rigidité de Mostow
(voir théoréme 5.1.5) & PSLy(C) et on reléve ensuite & SLy(C). On sait donc qu'’il existe un élément ¢ de
SLy(C) et € € Hom(T', {#1d}) tel que 6 = €. ¢¢|..

Considérons une autre représentation n € R(0(I')) telle que

wop(y)=e(y)nob(y), Vyel

11 est facile de voir que © descend en un biholomorphisme entre M, et M,,, puisque :
(s @) = (OO i @)ic(v) = £(1)*0(7) e (@) = 0(7) # (), ¥y el
Si on pose ¢ = 50 te-1, on a alors :
Y(yew)=veu(z), Vyel

E. GHYS a montré qu’un tel biholomorphisme est nécessairement donné par une translation a gauche par
un élément h € SLy(C) et les deux représentations p et n sont conjuguées par ce méme élément h.
Lorsque @y = Ly on obtient cZ(at) =to(r) = h¢x¢~'. La condition sur h et ¢ pour que % descend

en un automorphisme de M, est donné par :

pe(y)-tc(7) = () -tne(p(v)), Vy el (5.3)

O

Notons par G, I'ensemble formé des paires (h, () € SLz(C) x SLa(C) pour lesquelles 2 +— Lp¢o Rq-1(x)
descende en un automorphisme de M, c’est-a-dire formé des paires (h,() qui satisfont (5.3) pour un

certain ¢ € Hom(T', {+1d}).

P
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Corollaire 5.4.3. Soit p € R(I")* alors
G, — Aut(./\/lp), (h,C) — Lp¢ o Re—

est un morphisme surjectif de noyau donné par les transformations de deck, c’est-a-dire de moyau iso-

morphe a T

Démonstration. Le morphisme G, 3 (h,() — 5 = Lp¢c o Re-1 € Aut(M,) est surjectif par définition
de G, (et par caractérisation des automorphismes de M, dans le théoreme 5.4.2). Puisque SLo(C) est
simplement connexe, 5 descend en l'identité Id € Aut(M,) si, et seulement si, % est une transformation de
deck, c’est-a-dire, a(x) =7 ¢ pour un certain v € ', ou de maniere équivalente (h,¢) = (p(y) 1y, 77 1).

O

5.4.2 Composante connexe du groupe d’automorphismes

On va maintenant utiliser la caractérisation des relevés des automorphismes des variétés M, pour
calculer la composante connexe de 'identité du groupe d’automorphismes. Grace au lemme et au corollaire

précédents, on déduit le corollaire suivant.

Corollaire 5.4.4. Soit p e R(I')*, alors la composante connexe de l'identité Auto(/\/lp) du groupe d’au-
tomorphisme de M, est la composante connexe de l'identité du centralisateur Csy,(c)(p(I')) de p(I') dans
SLy(C).

Démonstration. Soit ¢ un automorphisme de M, isotope a I'identité. Il est clair ¢ se releve a SLy(C) en un
biholomorphisme 5 qui ne permute pas les fibres, autrement dit, (;NS est I'-équivariant pour 'automorphisme
identité de I' :

5(7;%) = 7;5(%)

En suivant la preuve du théoreme 5.4.2, cette condition implique que gzNS est une translation a gauche par
un élément h € SLy(C). De plus, puisque I' est toujours supposé sans torsion, — Id ¢ T et la multiplication
par —Id n’est pas un automorphisme de T.

Finalement, la condition (5.3) appliqué & 1’élément h nous dit que (,ZNS = Ly descend en un automor-

phisme de M, si, et seulement si,

p(7) = tn(p(v)), ¥yeTl

On conclut donc que h est dans le centralisateur de p(I") dans SLy(C).

Le centralisateur n’étant pas toujours connexe (si p est non-abélien par exemple, Cgp,,(c)(p(I')) =
{£1d}), il faut donc se restreindre a la composante connexe de l'identité. O
Remarque. Le centralisateur d’un tel groupe est facile a déterminer selon la nature de p :

e si p(T') © Z(SLy(C)) = {+1d} on a évidemment Aut’(M,) ~ SLy(C),

e si p(T) est abélien, Aut’(M,,) est isomorphe & la composante connexe de I'identité d'un sous-groupe

a parametre de SLy(C),
e sinon, Aut’(M,) = {Id}
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5.4.3 Automorphismes C*-isotope a ’identité

On note Aut'(M,) le groupe des automorphismes C*-isotope & lidentité, c’est-a-dire Aut'(M,,) =
Aut(M,) n Diff’(M,).
Remarque. Attention, pour une variété compacte complexe M quelconque, le groupe Autl(M ) n’est pas

toujours égal & Aut’(M). 11 existe de tels exemples dans [73].

Ce groupe joue un role trés important dans la construction de I’espace de Teichmiiller (voir chapitre 7)

puisque il définit le groupe d’isotropie des points de celui-ci.
Proposition 5.4.5. Soit pe R(T)?, alors Aut'(M,) = Csr, ) (p(T))-

Démonstration. En utilisant les résultats précédents, la proposition est équivalente a montrer que tout
automorphisme de M, induit par un élément g € Cgr,,c)(p(I")) est bien C*-isotope & l'identité.
Puisque les centralisateurs d’images de représentations sont tous connexes dans PSLo(C) (ils le sont
dans GL2(C) et donc dans PGL4y(C) = PSLy(C)), il suffit de vérifier que I’automorphisme de M, induit
par —Id est C*®-isotope a l'identité.
Nous I’avons vu dans la théoréme 5.3.11, les variétés M, sont difféomorphes a des fibrés sur H*/T" de
fibre S3. Rappelons que la fibration [II] : M, — H3/T" est induite par la fibration

IT:SLy(C) - H?, g p

ot p € H3 est tel que g € £, olt
Ly :={g€SL(C)lg.p = f(p)}

et f: H? — H? est une application k-Lipschitzienne (i, p)-équivariante, avec k < 1. Il est facile de voir
que II(—g) = II(g) puisque — Id agit trivialement sur H3. L’automorphisme de M, induit par —Id induit
donc un difféomorphisme des fibres S® du fibré M o = H? sans agir sur la base. Nous l'avions vu, les
fibres de cette fibration sont de la forme g SU(2)h avec g et h € SLy(C) et puisque — Id est dans le centre,
il commute & g et h. En identifiant les fibres & S3, I’action de — Id correspond & l’action par antipodie
sur chaque fibre S3 par antipodie. L’application = + —2 dans S est homotope & I'identité. Il en résulte

que 'automorphisme induit par — Id est homotope a l’identité. O

Remarque. Les variétés M, pour lesquelles I'image de I" par p ont un centralisateur dans SLy(C) non
connexe sont donc des exemples de variétés pour lesquelles Autl(Mp) # Aut’(M ) (plus précisément

Aut'(M,)/ Aut’(M,) ~ Z/27). Le lecteur intéressé pourra consulter [73] pour d’autres exemples.

5.4.4 Groupe des difféotopies
Un corollaire immédiat des calculs précédent permet de donner explicitement le groupe Aut(M )/ Aut'(M,).

Corollaire 5.4.6. Le groupe Aut(M,)/ Aut'(M,) est isomorphe au groupe Aut(T')/T. En particulier il
est indépendant de p.

Démonstration. Par définition et en utilisant le théoreme 5.4.1 et le théoréme 5.4.5, on obtient :
Aut(M,)/ Aut'(M,) ~ {c..c € Aut(T)|¢ € SLo(C), € € Hom(T', {£1d})}/ ~
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Ol E.4¢ ~ E.L¢r.- O

Remarque. Notons par ailleurs que ce théoréme 5.1.9 implique la finitude de ce groupe. En effet, Aut(T")
Hom(T', {+1d}) x N(I') implique # Aut(I") < 2™ x #N(T') < +o0 par le théoreme 5.1.10.

Remarque. 1l est probable que ce groupe soit en fait le groupe des difféotopies de SLy(C)/T.
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CHAPITRE 6

ESPACE DE KURANISHI DE M,

E CALCUL DES ESPACES DE KURANISHI des variétés M, est, comme nous ’avons vu dans le chapitre
L concernant les champs, indispensable pour la construction d’un groupoide analytique, atlas du champ
de Teichmiller de ces variétés. Ce chapitre propose donc de les déterminer.

On sait, par Ehresmann-Thurston que pour toute représentation admissible p, la variété des repré-
sentations, pointée en p, permet de construire des déformations de la structure complexe de M. Il est
donc naturel de s’intéresser a la famille tautologique au dessus de R(T")®. Ce chapitre propose de montrer

le résultat central de cette these :

Théoréme 6.0.1 (de complétude). Il existe un ouvert de Zariski (analytique) V' de R(I')® sur lequel la

déformation de la variété M, avec p € V, donnée par la famille tautologique au dessus de V' est compléte.

L’idée principale de la démonstration de la complétude de cette famille repose sur le méme principe que
celui utilisé par GHYS. Nous démontrons que le plongement du faisceau des germes de sections de 7'M,
localement constantes dans le faisceau ©, des germes de champs de vecteurs holomorphes sur M, induit
une injection entre les premiers groupes de cohomologie et que ce plongement induit un isomorphisme en
degré 1. Au niveau des points singuliers, la stratégie est de regarder les déformations aux ordres supérieurs
et de montrer qu'un germe de déformation sur C peut toujours se relever un germe de déformation sur

la variété des représentations paramétré par C.

6.1 Cohomologie des variétés M,

Soit p une représentation admissible. Le faisceau ©, des germes de champs de vecteurs holomorphes sur
M, s’identifie naturellement au faisceau des germes de sections holomorphes du fibré (SL2(C) x sl3(C))/T.

D’apres les rappels sur les G-fibrés principaux faits dans le chapitre 3, ce fibré plat est donné par une
représentation du groupe fondamental et on note aussi F, le faisceau des sections de T'’M, localement
constantes. Notons que F, se plonge dans le faisceau ©,.

Rappelons que le théoreme 3.2.2 affirme que le premier groupe de cohomologie de M, a valeurs dans
le faisceau F, correspond aux déformations infinitésimales de la (SLa(C) x SLy(C), SLo(C))-structure de
M,.
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Proposition 6.1.1. On suppose qu’il existe au moins une représentation admissible p qui corresponde a
un point réduit dans la composante conneze de py de la variété des représentations R(I')*. Alors, il existe
un ouvert Zariski (analytique) V de R(I')*° tel que pour tout p € V, le plongement de F, dans ©, induit
les isomorphismes

H'(M,,F,) ~ H'(M,,0,), i=0et1

ainst qu’une injection

Hz(Mpv}—p) - HQ(Mm@p)

Pour montrer ce résultat, nous allons expliciter les applications suivantes :
H'(M,, F,) ~ H(,sl(C),) — H'(I',H,) ~ H'(M,,0,), i =0,1 et 2

ot H, est le I'-module des fonctions holomorphes globalement définies sur SLy(C) a valeurs dans sl (C).
Ce groupe (pour 'addition) est muni de la structure de I'-module induite par pré-composition par 'action

de T via e et post-composition par la représentation adjointe de p. C’est-a-dire :
p

Hp el f = (’7f B ‘Adp('y)*1 f(p(’y_l)x’)/))

Remarquons que l'espace I'-invariants de H, s’identifie a I'espace des sections globales holomorphes du
fibré tangent de M,. Rappelons que sl3(C), désigne 'algebre de Lie sl3(C) munit de la structure de
I'-module donnée par Ad,.

Lorsque la structure de I'-module ne nous sera pas utile, nous omettrons le p dans son écriture. Par
exemple, H fera référence au groupe des fonctions holomorphes globalement définies sur SLy(C) & valeurs
dans sl3(C).

Nous montrerons ensuite que l'injection est en fait un isomorphisme pour ¢ =0 et ¢ = 1.

Lemme 6.1.2. Soit p € R(T")*, alors
H'(M,,F,) ~ H (I, sl5(C),),— H'(I,H,) ~ H'(M,,0,), i =0,1 et 2

Démonstration. Le passage de la cohomologie de Cech & la cohomologie des groupes est donné par la
théoréme 4.1.11 énoncée dans le chapitre 4. Appliquons alors cette proposition au quotient 7, : SLa(C) —
M, et successivement aux faisceaux F, et ©,. Comme le faisceau F, (resp. ©,) est obtenu comme faisceau
de germes de sections localement constantes (resp. holomorphes) d’un fibré vectoriel, le pullback de ce
faisceau par 7, : SLa(C) — M, est simplement le faisceau des germes de sections localement constantes

(resp. holomorphes) du pullback du fibré :
SLQ((C) X 5[2(@) e TMP

n| |»

SLy(C) ——— M,

On conclut que l'ensemble des sections globalement constantes (resp. holomorphes) du fibré trivial
SLy(C) x sl3(C) — SLa(C) est Pensemble des fonctions constantes (resp. holomorphes) de SLy(C) dans
5[5(C), ce que l'on dénote abusivement encore par sly(C) (resp. H).
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Rappelons que le théoréeme B de Cartan affirme que pour une variété Stein X et n’importe quel
faisceau cohérent F, les groupes H?(X, F) s’annulent pour p > 1.
Dans notre contexte, SLs(C) est une variété Stein puisqu’elle est isomorphe a la variété affine ad—bc =

1 dans Cla, b, ¢, d] et le faisceau ©, est cohérent. On se retrouve donc avec les isomorphismes suivants :
HYT,H,) ~ H(M,,0,), ieN

Le faisceau F, n’est pas cohérent mais en remarquant que SU(2) est un rétracte par déformation de

SL2(C), on obtient la suite d’isomorphismes suivant :

HP(SLs(C), 7% F,) ~ HP(SLy(C), s15(C)) ~ H?(SU(2),51(C))

ou sl3(C) désigne le faisceau constant associé a sl (C).

De plus, en utilisant le théoréme des coefficients universel et 'identification SU(2) ~ S3, on a

HP(SU(2),sl2(C)) ~ HP(SU(2),C) ®sl(C) ~ HP(S* C) ®sl,(C)
Dont on déduit 'annulation pour p = 1 et p = 2. Ce qui donne finalement
HY(T,sly(C),) ~ H(M,, F,), i=0,1et 2

Le plongement ¢ de sly(C) dans #, est invariant par 'action de SL2(C) et donne lieu & la suite exacte

de I'-module suivante

0 — s1y(C), — H, — H,/sl5(C), — 0 (6.1)

La fonction ¢ : H, — sly(C), définie par ¢ (F') = J Flg(2) dp ol p est la mesure de Haar normalisée
Su(2)

(c’est-a-dire J SU(2)du = 1) vérifie pour tout X € sl(C), ¥oi(X) = J Xdu = X Cette
SU(2) SU(2)
application définit alors un scindage de la suite (6.1). On a alors que les applications

H'(T,sly(C),) — H'(I',H,), i=0,1et 2

sont injectives [104]. O

Preuve de la théoréme 6.1.1. Notons

hé) : R(F)a - N+7 p = dlmHZ(Mpv @P)
B RO Ny, e dim Hi(M,, F,)
Puisque la variété des représentations pointée en pg est l'espace de Kuranishi de SLy(C)/T, la famille

tautologique X* — R(T')® est compléte en tous points dans un voisinage Vp de pg. Puisque la SLy(C)-

conjugaison induit un isomorphisme entre les variétés M,, la famille tautologique de déformations de M,
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pour p € Vy s’obtient comme pull-back de la famille tautologique restreinte & un sous-espace analytique
de Vp contenant p et localement transverse a lorbite (par SLs(C)-conjugaison) de p. Par le calcul de la
dimension du groupe d’automorphismes (et donc de la dimension de l'orbite), ce sous espace & dimension
hl}-(p) Remarquons que la famille semi-universelle, parmi les familles compleétes, est caractérisée par le
fait que la dimension de sa base est minimale en p. On obtient alors que pour tout p € Vo, hi=(p) = hi(p).

Mais linjection de H'(M,, F,) dans H*(M,,0,) (lemme 17) nous donne l'inégalité inverse et on
déduit donc D'égalité hl-(p) = hg(p) pour tout p € V4.

On considére maintenant la famille tautologique au dessus de R(I')*Y. On sait [20] que pour tout
q = 0, la fonction

p = B () = K () + -+ + (=1)7h(p)

est semi-continue supérieurement pour la topologie de Zariski analytique sur R(I")%°.

Par hypotheése, R(I')* posséde au moins un point réduit, alors I’ensemble des points non réduits est
un sous-espace analytique strict et R(I')* posséde alors un ouvert de Zariski de points lisses (et donc
de R(T)*Y. Sur cet ouvert de Zariski, la

dimension de ’espace tangent est partout la méme et la fonction

réduits). Placons nous alors sur la partie lisse (R(I‘)%O)“SSE

p = he(p) — hg(p) — dim T,R(D)"
est semi-continue supérieurement. D’autre part, puisque

h(p) = dim H' (T, 55(C) )
= dim Z (T, s15(C),) — dim B* (I, sl(C),)
= dim T,R(T)" — (3 — h%(p))

la fonction

p = ho(p) = he(p) — (hx(p) + (3 — hix(p)))
= ho(p) = hyx(p) = 3+ hix(p) — hig (p)
est encore semi-continue supérieurement. De plus, h%(p) = hd(p) (par le calcul des champs de vecteurs

sur Mp).

En particulier, sur (R(l")“’o)lisse on a que

¢:RI)™ >N, ps hb(p) — hix(p)

est une fonction semi-continue supérieurement et toujours positive puisque hg(p) = h%_—(p) Or, d’apres
les arguments précédents, il existe un ouvert Euclidien Vg sur lequel on a ¢(p) = 0, on sait alors qu’il

existe un ouvert de Zariski analytique V' le contenant, sur lequel cette fonction s’annule partout. O]

Corollaire 6.1.3. Soit R une composante connexe de R(I')*. Si R contient un point p pour lequel
hi-(p) = h(p) et si R nest pas composée que de points non-réduits, alors il existe un ouvert de Zariski

analytique de R sur lequel on a complétude de la famille tautologique.
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Démonstration. La preuve est la méme que la preuve précédente en remplagant R(I')*° par R et en se

basant au point p. 0

6.2 Obstructions supérieures

On veut maintenant décrire les déformations de M, au dessus de (C, 0) et montrer qu’elles se ramene

toujours & des déformations au dessus de R(I")*. Plus précisément,

Théoréme 6.2.1. Pour toute représentation admissible p € R(T')* telle que H*(T,sl5(C),) ~ HY(T, H,),

la variété de représentation est compléte.

Pour montrer cela, reprenons la construction faite dans le chapitre 1.

Pour tout ouvert U de M, on considere les biholomorphismes
f:w-w

ou W, W' < M, x C sont des ouverts contenants U x {0}. On considére ’ensemble formé de tels biho-
lomorphismes qui présérvent les fibres M x {p} et tels que f| M, x {0} = Id. On défini le faisceau A” sur
les ouverts U, A?(U) commme ensemble de ces biholomorphismes que 1'on identifie deux a deux s’ils
coincident sur un voisinage de U x {0}. Nous I’avons vu, le groupe H'(M,, A?) s’identifie & 'ensemble
des classes de germes de déformations de M, paramétrées par (C,0).

En reprenant la filtration naturelle {A}}, du faisceau A et en posant Q) = A?/A}_, on obtient la

suite exacte suivante :
OH@,,HQZHHQZHO (6.2)

Preuve du théoréme 6.0.1. L’idée de la démonstration est la suivante. Soit X — U < C une déformation
de M, au dessus d'un voisinage U de 0 dans C. Supposons que jusqu’a l'ordre n, cette déformation soit
équivalente a une déformation de M, induite par une déformation de la représentation p a l'ordre n.

Autrement dit, on suppose qu'il existe des cochaines {¢;}? ; telles que 'on ait le diagramme suivant

X = f*M, @) —— (M, v}

| |

UcC —L s Hom(T, SLy(C[t]/(t*+1)))

i pn(t)

jusqu’a 'ordre n, ou
p(t) = p o (t) sy > exp (Z Ci('Y)tl) ()
i=1

On va montrer que dans cette situation, on peut trouver une cochaine c,.1 telle que le résultat puisse
s’étendre a l'ordre n+ 1 en considérant la déformation a 'ordre n+ 1 induite par p,,+1(t) = pn+i(t).

Commencgons par formaliser ceci. Si il existe de telles cochaines a l'ordre n, on peut alors équiper
gn, = sla(C[t]/(t" 1)) avec la structure de I'-module donnée par Ad,,. On note gf» l'algébre de Lie g,

munie de cette structure.
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En interprétant Bf := H°(SLy(C), 7*Q¥) comme un ensemble de n-jets, on obtient une injection de

I'-modules gf» — Bf. Ces applications induisent un morphisme entre suites exactes :

0 — sl(C), — gfr — gh"; — 0

Lol

0 —— H, —— B, — B

n—1

— 0

On en déduit alors I'existence de morphismes entre les suites exactes longues associées et en particulier,

on a :

HY(T,sl5(C),) — H'(T,gf) —— H'(T,gh,) —— HA(T,s13(C),)

n—1

! I I I

HY,H,) — HY(T,B) —— HY(T,B/_,) — H*(I','H,)

n—1

De plus, puisque SLy(C) est une variété de Stein et que 70, est cohérent, nous avons H!(SLy(C), 7*0,) =

0 (voir la preuve du théoréme 6.1.2 pour plus de détails), ainsi
00— Hp = HO(SLQ((C),TF*@p) — BZ — Bﬁ_l — 0

On sait donc, par la théoréeme 4.1.11, que 'on a un morphisme entre les suites exactes longues associées

en cohomologie qui donne lieu au diagramme suivant :

HY(,H,) — HY(T,B) —— H'(I',B’_,) —— H2(T,H,)

n—1

L L L L

Hl(Mm@p) — Hl(MpvQﬁ) — Hl(Mpv « ) L HQ(M;N@P)

n—1
En concaténant les deux diagrammes, on obtient finalement :

H'(T,sl5(C),) — HY(I,gtr) —— H'(D,g"" ) —>— H2(T,sl5(C),)

n—1

HY(M,,0,) — H'(M,, Q) —— H(M,,Q_,) —>— H2(M,,0,)

n—1

Soit maintenant § € H*(M,,0,) I'image de l'application de Kodaira-Spencer appliqué a la famille
X — U. On sait par [24] qu'il existe une suite d’éléments 0), € H' (M, Q}) qui sont contenus dans I'image
réciproque de 6 dans H* (M, Q%) et tels que ) (0x) = 0. Et I’équivalence entre X — U et la déformation

induite par p,(t) a 'ordre n se réécrit
i(C) = b, V1< k<n

d
ou Cp € HY(T, g{") est définit comme au chapitre 4 par C'(7) = Pry (pn (7)) pu(y™Y) avec py, @ g —
gi" est la projection naturelle. Et pour que I'on puisse étendre ce résultat a l'ordre n + 1, il nous faut

montrer lexistence d’une cochaine ¢, 41 € C'(I',s15(C),) telle que

i(CRHY) = O, Vi< k <n
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6.3. Application de Kodaira-Spencer au dessus de R(T)

L'existence d’une telle cochaine ¢, 41 est assurée par le fait que 6(C) = 0 (puisque 6(6,,) = 0) et par le
théoreme 4.2.11.

Une condition suffisante est donc que i sOit surjectif pour tout n > 1. Etablissons ce fait récursivement.

Initialisation : Pour n = 1, c’est la théoreme 6.1.1. En effet le diagramme précédent devient :

H'(T,s15(C),) —— H'(T,qf") —— H'(T,sly(C),) —— H2(T,s12(C),)

Hl(Mm@p) E— Hl(MmQ’f) I Hl(Mm@p) — H2(Mm®p)

et cette proposition a déja établi que i1 = i3 sont des isomorphismes et ia est injectif. Le lemme

des quatre implique que iy est surjectif.

Hérédité : Supposons que i : HY(T,gt) — H*(M,, Qnp) soit surjectif. On a toujours que i1 est un isomor-

phisme, iq est injectif. On conclut donc encore par le lemme des quatre que i3 est surjectif.

On obtient alors une suite de cochaines {c¢;}2; qui nous donne une déformation formelle de p :

poo i 7 > exp (Z C¢(v)ti> p(7)

L’existence d’une solution convergente est donnée de la fagon suivante. Soit (y1,- -+ ,vn| R1, -+ , Rm)
est une présentation de I, alors la variété des représentations R(T") s’identifie avec les n-uplet (21, ,x,)
de SLo(C)™ vérifiant R;(x1,--- ,x,) =Id pour i = 1,--- ;m. On dispose donc d’une description de R(T")

par un systeme de d’équations polynomiales F tel que
R(I') ~ V(F) = {x € SLy(C)" = C*"|F(x) = 0}

La solution formelle trouvée précédemment correspond donc a un élément x(t) € C**[[t]] telle que
F(x(t)) =0.

Par le théoréme 1.4.2 (théoréme d’ARTIN sur la convergence de solutions formelles), on sait que pour
tout N € N, il existe %(t) € C*"{t} telle que %(t) = x(t) mod V.

On conclut que toute déformation de la structure complexe de M, paramétrée par (C,0) s’obtient
par pullback sur la variété des représentations. Cela montre que la variété des représentations est com-
pléte en chaque point correspondant a une représentation admissible et a fortiori conclu la preuve du

théoréeme 6.0.1 (théoréme de complétude). O

6.3 Application de Kodaira-Spencer au dessus de R(I")

Par complétude de la famille tautologique au dessus de la variété des représentations, nous savons
que l'application de Kodaira-Spencer associée a la famille tautologique au dessus de R(I")* est surjective
en chaque point. Cependant, dans cette section nous donnons une forme explicite de cette application et

montrons le résultat suivant :
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Proposition 6.3.1. L’application de Kodaira-Spencer associée a la famille tautologique au dessus de

V < R(I*° pointée en p € V est donnée par la composition d’applications :
T7"R(I)* ~ ZM(T,sly(C),) = H'(,sl5(C),) ~ H'(I',H,) ~ H'(M,,0,)

ot p: ZYT,slz(C),) — H(I',s15(C),) est la projection d’un cocycle sur sa classe de cohomologie.

Démonstration. Les rappels de la sous-section 1.3.2 affirment que 'application de Kodaira-Spencer est
la premiere application connectante de la suite exacte longue obtenue a partir de la suite fondamentale

associée a la déformation ps : X* — V o X est le quotient de SLy(C) x V par I'action de I' donnée par :
[ x SLy(C) x V = SLa(C) x V,  (y,2,p) = (p(v) ', p)

Reprenons les notations du chapitre 1 de la section concernant la suite fondamentale. I’annulation du
groupe H'(SLy(C),7%0,) implique I'existence d'un morphisme entre la suite exacte longue associée a la

suite fondamentale :
0 — HO(M,,0,) — H(M,, ¥\ ) — HO(M, T,R(T)) ~ T,R(T) 2> H' (M, O0,) = -

et la suite exacte longue

0 —— HO(T,H,) —— HO(T, H'(SLy(C), 7* ¥/, )

c

T,R(T) o HCH,) o

En particulier, I'application de Kodaira-Spencer se déduit (via Iisomorphisme entre cohomologie de T'
et cohomologie de Cech de M,) de I'application connectante de cette deuxiéme suite exacte. Nous nous
proposons alors d’expliciter cette application.

Soit c € Z1(T',s12(C),) ~ T,R(T). Soit (v, c) € H*(SL2(C), 7* \II|MP) (de sorte que 7 (v, ¢) = pa2(v,c) =
¢), ou v est une application holomorphe de SL2(C) dans sl (C).

Ecrivons d’abord I’action de T' sur H°(SLy(C), * \I!|Mp). Pour tout élément v € I, posons

G, : SLy(C) x R(I")* — SLy(C) x R(T)"
(z,p) = (p(y")z7,p)
Prenons zg € SL2(C) et £ > 0. Soit ¢, :] — &,e[— SL2(C) x R(I')® un chemin passant par (zg,p) €
SL(C) x R(I)* donné par (1) = (x(t),¢'*p) oft %p : 7 = ete1+0(6%) () et tel que - 9(t)],_g = (v.¢).
On a alors
d
(G502, (0) Tt Gy © b (t)‘t:o
-4 (e“p(y) a(t),ep) |

T dt
= (c(v) + p(7)~

t=0

Yop(v),c)
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Alors, 'image de ¢ par §* est représentée par la classe de cohomologie de d°(v, c). On a donc 6* (v, ¢) =
(Gy)x(v,¢) = (v,¢)
0*(v,¢): T — H,, v () + p(y) top(y) — v
De plus, puisque p € V on sait que H'(I',H,) ~ H'(I',s15(C),). Il existe donc un élément X € sly(C) tel
que () + p(y) " vp(y) —v = e(v) + p(7) "' Xp(y) — X. On a alors

[6% (v, )] = [e + ex] = [¢]

olt cx est le cobord associé & X € sly(C), c’est-a-dire définit par cx (v) = p(7) "1 Xp(y) — X. O

Remarque. Remarquons au passage que remplacer ¢ par un cocycle lui étant cohomologue ne change pas

I'image de l'application de Kodaira-Spencer. Autrement dit, un cocycle obtenu comme vecteur tangent a
orbite de p est envoyé sur KS(p) = 0€ H*(M,,0,).

6.4 Description des espaces de Kuranishi

On aimerait pouvoir donner une description plus précise de la géométrie des espaces de Kuranishi des
variétés M. La principale obstruction a cette réalisation est ’existence de représentations dont l’orbite
n’est pas fermée. De plus, l'existence de « sauts »de la fonction p — h%(p) est clairement une difficulté
supplémentaire. Dans cette section, nous donnons d’abord un corollaire immédiat au théoréme 6.0.1 dans

le cas général puis nous esquivons les difficultés en supposant que le premier nombre de Betti de I est 1.

6.4.1 Cas général

Corollaire 6.4.1. Soit I" un sous-groupe discret co-compact dans SLa(C) et p € V < R(I)*. Alors,
tout espace C-analytique Z contenant p et localement transverse auz SLa(C)-orbites définit (en tant que

germe) Uespace de Kuranishi de M.

Remarque. Si p est un point singulier, par le théoréme d’HIRONAKA (voir [3]) il existe une désingularisation
7: W — R([)* de R(I)* en p dont on sait que 7 est propre. On choisit alors une section transverse Z
a m1(0,) dans W et on consideére Z = m (2)

La preuve découle immédiatement du théoreme 6.0.1 de complétude.

Corollaire 6.4.2. Soit T’ un sous-groupe discret co-compact dans SLs(C) et p € R(T')* une représentation
irréductible. Alors, Uespace de Kuranishi de M, est donné par le germe de la variété de caractére X (I")

pointée en p.

Démonstration. La variété de caractere restreinte aux caracteres irréductibles est un espace d’orbites. Le
théoreme de complétude permet de conclure. O
6.4.2 Section transverse dans le cas b;(I') =1

Nous commengons par caractériser les représentations a images abéliennes afin de construire explici-

tement des sections localement transverses aux orbites et donc les espaces de Kuranishi correspondants.
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Notons R(I')?® le sous-ensemble de R(T) constitué des représentations abéliennes (c’est & dire dont
I'image de I" par une telle représentation est un sous-groupe abélien de SLy(C)).

On sait par la théoréme 5.3.9 que dans le cas ou by (') = 1, R(I')* et R(I')* coincident sur la
composante connexe de po.

Pour le reste de cette section, fixons un sous-groupe discret co-compact I' de SLy(C) de premier
nombre de Betti by (') = 1 = dim Hy(M,, Q) = rk(mM,)) = rk(I'“’) ainsi qu'une présentation de son

abélianisé :
Fab = <707"' y Tn |’Yfl’ = Ida 1= ]-a , N, [’Y’H’YJ] = Ida Zv] = 07 ,TL> (63)

avec d; € N*,
On sait que toute représentation & image abélienne se factorise par I'®*, on obtient alors qu’une

représentation p € R(I')? est déterminée par

p(L) =<p(r0), -+, p(m) | ord(p(yi))ldis i =1, m, [p(%:), p(7;)] =1d, i,j = 0,--- ,n)

On pose k; = ord(p(y;)).

Remarquons que la surjection I' — Z donnée par l’abélianisation induit I'injection SLy(C) ~ R(Z) —
R(T).
Proposition 6.4.3. L’image de linjection ¢ : R(Z) — R(T') correspond ¢ R(T)°.
Démonstration. Par le théoréme 5.3.9, on sait que sur la composante R(T')?, toutes les représentations

sont & images abéliennes et sont déterminées par leurs images sur les v;, ¢ =0, - , n.

Commencons par remarquer que pour tout ¢ = 1,--- ,n les fonctions
T':R() = C,  prTe(p(y))

sont continues et, par unipotence des ;, i = 1,--- ,n, elles satisfont ’I‘rl(p) = 2cos(a) oll « est une
racine primitive k;-iéme de I'unité. Elle sont donc a images discrétes et localement constantes. Sur la
composante connexe R(I')?, une représentation p est donc entiérement déterminée par son image de
vo et vérifie p(v;) = Id, i = 1,---,n. Autrement dit, l'injection Z < T% induit un isomorphisme
R(Z) — R(I')? = R(I')?. On est donc ramené & étudier R(Z). O

De plus, le critere de propreté de KASSEL permet, dans ce cas, des calculs explicites. Reprenons les

notations de la section 3.3.

Proposition 6.4.4. Soient o € R*, on pose A, Uouvert de SLo(C) défini par
Ay = {X eSLy(C) | M(X) < x}

oti A(X) est la longueur de translation de X. Il existe a € RY tel que limage de A, par Uinjection
¢ : SLa(C) ~ R(Z) — R(T') correspond d l'ouvert V.< R(I')* n R(I")°.

Démonstration. La proposition précédente affirme que ¢(SL2(C)) = R(I')°. Soit X € SLy(C) et p est

une représentation déterminée par p(vy) = X et p(7;) = Id pour tout ¢ = 1,--- ,n, alors, par le critére
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d’admissibilité de GUERITAUD-KASSEL, p est admissible si, et seulement si, le ratio des longueurs de

. Alp(7))
translation C’(p) = sup
(v) vl A(Y)

A(X), on peut le choisir suffisamment petit pour que C’(p) < 1. On note alors « le suprémum des

soit strictement plus petit que 1. Puisque A(p(y)) ne dépend que de

nombres réels positifs qui vérifient I(X) < a = C'(p) < 1. O

En utilisant la forme de Jordan de la matrice X, on obtient alors le corollaire suivant :

Corollaire 6.4.5. Soit X € A, et p:= ¢(X).

o Si X est conjuguée a une matrice de la forme avec z ¢ {0, £1} et tel que p e V alors, la

Z—l

famille de Kuranishi de M, est donnée par le germe de la famille

{M,_|eeD}

e

- 0 o " Z+e€ 0
ointée en 0, ou 1. = )
P ! 0 (247t

+1 1
e 57 X est conjuguée a une matrice de la forme B . et tel que p € V alors, la famille de

|
:

Kuranishi de M, est donnée par le germe de la famille

{M¢; | 6 €D}
D
t1+46 1
ointée en 0, ou (. = o .
P e ¢<< 0 (J_r1+5)1>>
. . . . + qzpos i +1 1
Remarque. Puisque les orbites des représentations p™ définies par p*(vy) = 0 41 ne sont pas

fermées, la variété de caracteres de Z n’est pas partout un espace d’orbites. Cependant ’application

¢:R(Z)—C*/~,  p—oa(p(m))

olt o(g) est une valeur propre de g et g ~ g~!, est un espace d’orbites sur ¢~!(C*\{£1}). Ce quotient

catégorique est en fait équivalent a la variété de caracteres :

)0 ~ R(Z) —= X(Z
-

C*/ ~

R(T )

ot f(g) =g+ g~ ! (voir I'théoréme 4.3.17).
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Reprenons la présentation (6.3) de I'**. Soient i = 1,--- ,n et « un diviseur de d; et soit p; la

représentation & image abélienne déterminée par

2iTta
e % 0
Pj,a(’Yj) = < 0 6_22’;0>

et pjo(v:) = Id, pour tout i # j. Puisque cette représentation est a image compacte, elle est admissible

et on sait qu’il existe un ouvert U, , < R(I')* qui contient p; 4.
7, q Pi,
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CHAPITRE 7

CHAMP DE TEICHMULLER DE SI»(C)/T’

OUS ARRIVONS MAINTENANT & la construction de 'ouvert du champ de Teichmiiller de la variété
SLy(C)/T correspondant & 'ouvert des représentations V' < R(I')*. Dans le chapitre précédent, nous
avons montré la complétude de la famille tautologique au dessus de cet ouvert V' < R(I')* puis montré
que le groupe d’isotropie d'un point du champ de Teichmiiller (c’est-a-dire le groupe Aut'(M,)) est
donné par le centralisateur de p(T") dans SLy(C). On va donc naturellement considérer le champ quotient
de la variété des représentations par laction de conjugaison par SLs(C) et montrer qu’il s’agit bien d’un
sous-champ du champ de Teichmiiller. Les résultats de KASSEL énoncés dans le chapitre 4 permettront
d’affirmer que ce sous-champ, que l'on appellera naturellement champ des caracteres admissibles, est
ouvert dans le champ de Teichmiiller.
Par ailleurs, nous proposons de souligner I'intérét qu’apporte le point de vue champétre en comparant
ce champ des caracteres avec la version plus classique du quotient GIT revue dans le chapitre 4. Nous

finirons ce chapitre par quelques résultats sur la fonctorialité de la construction de ce champ.

7.1 Champ des caracteres
On se place au dessus du site Anc. Comme précédemment, notons X := SLy(C) x R(T).
Définition 7.1.1. Le groupoide des caracteres est le groupoide de translation
X Xpyrmy, X X pj R() % X -4 X

ou les cing applications (po, ¢, m,u, i) sont définies de la fagon suivante

e l’application source est la projection sur le deuxiéme facteur
p2: SLe(C) x R(I) = R(T),  (X,p) = p2(X,p) =p
e l'application cible est la SLy(C)-conjugaison sur R(T")
v:SLy(C) x R(I) = R(I'),  (X,p) —uxop
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e lapplication de composition est donnée par la multiplication de SLy(C)
m:xxs,R(F),tqua ((X,p),(Y, [/Xop)) = (YXap)

e ’application identité
u:R(I)—>%X, p—(Idp)

e et 'application inverse correspond a l'inversion dans SLy(C)
i SLy(C) x R(D) = SLo(C) x R(T), (X, p) = (X", p)

Remarque. La commutativité des diagrammes du théoréme 2.2.5 a déja été faite dans I’théoreme 2.2.8.
De la méme fagon, on définit le groupoides des caractéres admissibles. Notons X® le sous-espace de X
donné par X := SLy(C) x R(I")“.
Définition 7.1.2. Le groupoide des caractéres admissibles est le groupoide de translation
X Xy, m(rye, X X R(I)T 5 X X
ou les cing applications (pa, ¢, m,u, i) sont les restrictions & R(I')* des fleches vues précédemment.

Définition 7.1.3. Le champ des caractéres (resp. caractéres admissibles) est la champification de la CFG

associée au groupoide des caractéres (resp. caractéres admissibles).

Remarque. Un pré-champ donné par un groupoide de translation n’est en général pas un champ. Puisque

nous voulons pouvoir recoller les SLy(C)-fibrés plus tard, il est naturel de champifier cette CFG.

En utilisant la définition dans le théoreme 2.2.40, on peut reformuler cette définition en disant que le

champ des caractéres (resp. des caractéres admissibles) est le champ quotient
[R(T)/SL2(C)],  (resp. [R(I')*/SL2(C)])

Meéme si nous avons déja détaillé les objets et morphismes d’un tel champ, il est utile de le revoir ici.
Un objet du champ [R(I')¢/SL2(C)] est la donnée d’un SLo(C)-fibré principal P — U au dessus d'un
espace C-analytique U et d’une application SLy(C)-équivariante f : P — R(I')*. Remarquons que 1’on
peut, & partir d’un tel objet, reconstruire une déformation de SLy(C)/T'. Si U, est un ouvert de U et
U, : Uy xSLa(C) — p~1(U,) est une trivialisation de P, alors I'application foW,, : U, x SLy(C) — R(T')*

permet de définir une relation d’équivalence ~; sur U, x SLy(C) via

(w,2) ~f (u,y) = Iyel, y=(foP(uz)(y™"))ry

Le quotient U, x SL2(C)/ ~; muni de la projection sur U admet une structure de famille. De plus, la
SLy(C)-équivariance de f et de ¥ permettent de vérifier que les changements de cartes préservent les fibres
a biholomorphismes pres. On obtient de cette fagon une famille sur U dont les fibres sont biholomorphes
a My ,-1(4)) pour tout u e U.

Il est facile de vérifier que les morphismes entre ces familles correspondent aux biholomorphismes de

familles.
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7.1.1 Champ de Teichmiiller de SLy(C)/T

Reprenons les notations du chapitre 2. Soit Z(M) lensemble des structures complexes sur M =
SL2(C)/T. On veut définit une application ¢ : R(I')* — Z(M) qui envoie une représentation sur la
structure complexe de M,. L’application ¢ se définie de la fagon suivante. Soit p une représentation
admissible et considérons de fibré des reperes F (./\/lgiﬁ ) de Mgiﬁ , ol Mgiﬁ est la variété C* sous-
jacente a M,. Les points au dessus d’un point z € Mg’ff sont identifiés a des isomorphismes linéaires
RS — TIMngf . Notons que le fibré tangent T M, (voir (5.1)) admet une structure naturelle de sous-
fibré de F (Mgiﬁ ) par isomorphismes C-linéaires C3 — Tx/\/l,fiﬁ et la réduction du groupe structural
correspondante définie un opérateur J, du fibré qui correspond exactement a la structure complexe de

M. On définit alors i par ¢ : p+— J,.

Théoréme 7.1.4. Le champ [V /SLa(C)] des caractéres admissibles restreint a4 V' est un sous-champ
(ouvert) du champ de Teichmiiller de M.

Démonstration. Le théoréme 6.0.1 permet d’affirmer 'existence d’un ouvert V' < Z(M) de structures
complexes M, données par des représentations p € V. On sait donc que localement, toute déformation
X — B dans le champ de Teichmiiller 7y« (M) peut étre vue comme un SLo(C)-fibré principal P — B avec
une application SLs(C)-équivariante p: P — V < R(I')%, qui est un élément du champ des caractéres.
Montrons maintenant que le champ des caractéres admissibles est une sous-catégorie pleine du champ
de Teichmiiller. Localisons 'ouvert de Zariski V', c¢’est-a-dire remplagons la par un recouvrement d’ouverts
LI, Uq et prenons U, et Ug deux tels ouverts qui s’intersectent non trivialement et tels que les familles
tautologiques 7 : Xy, — U, et 7' : Xy, — Ug soient reliées par des morphismes f : U, — Upg et

F: X|y, — X|v, dans le champ de Teichmiiller.

F
3€Ua —_— %U,g

lﬂ Tr,
Uy —1— Ulﬁ

Quitte a raffiner la localisation, on peut supposer U, et Ug suffisamment petits pour que les deux familles
soient reliées (sur lintersection U, n Ug) par Paction d'un élément g € Aut' (M) donc par un élément
g € SL2(C) par la théoréme 5.4.5. On obtient alors une application F:U,n Us — SLy(C) telle que
F(2) = tpn(ay (@) ~ R

Cette application F' satisfait pp o (F',Id) = Id et to (F,1d) = ¢ ou ps et ¢ sont les applications sources
et cibles du groupoide SLy(C) x R(I")* =3 R(I). O

On déduit alors facilement le corollaire suivant :
Corollaire 7.1.5. Le groupoide

SLy(C) x V3V
p2

est un atlas de Ty (M).

Remarque. On connait des exemples explicites de groupes I' (avec bI") = 1) pour lesquels la variété

des représentations associée n’est pas séparée. Pour de tels T', il existe donc une suite de structures
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complexes {J,} convergente vers J,, telle que J, et J, sont biholomorphes pour tout n et m € N
et ((SLo(C)/T)* | J..) n'est biholomorphe & aucune variété ((SLo(C)/T)* | J, pour n’importe quel
n < 4.

7.1.2 Champ de modules de Riemann de SLy(C)/T

Rappelons que la rigidité de Mostow permet de décrire les automorphismes de I" : si § € Aut(I")

alors il existe une unique paire (¢,¢) € Hom(T', {+Id}) x SL2(C), modulo le centre de SL2(C), tel que
0(7) = e(y)¢r¢

Théoréme 7.1.6. Le sous-champ [V /((Aut(T') x SLy(C))/T")] est un sous-champ owvert du champ de

modules de Riemann de SLa(C)/T, ou laction est donnée par

(0,t) : Aut(T") x SLy(C) x R(IN)* - R(I)?, (o,0)(e.te,h,p) =€ opoe

et se factorise en une action de (Aut(I') x SLy(C))/T sur R(I)* ot I' agit via y(e.tc,g) = (14 ©
ete,gp(7)7h).

Démonstration. La construction est similaire au champ de Teichmiiller et le groupe d’isotropie d’un point

p est bien isomorphe au groupe d’automorphisme de M, que nous avions appelé G,/T".

En utilisant la construction faite dans [74], on a que le groupoide de Lie

(Aut(T) x SLo(C) M x V' '3 v

p3

est un atlas du champ de modules de Riemann. O

7.2 Champs versus théorie des invariants géométriques

Une question assez naturelle est de savoir ce que 'on a gagné a travailler avec le champ quotient
plutdt qu’avec le quotient affine 7 : R(I') — R(T")//SL2(C) construit au chapitre 3.

Une premiere différence entre la version champétre et la version GIT est celle de I'espace tangent.
Le lien entre l'espace tangent a la variété des caracteres et le groupe H 1(1",5[2((3)p) n’est pas encore
pleinement compris (voir par exemple [90, Question 56]). Cela est du au simple fait que I’espace tangent
d’un quotient n’est pas toujours le quotient des espaces tangents. Dans notre cas, on a pas toujours égalité
entre T,R(T)// SLa(C) et T,R(T)/T,0(p) = Z(T',s15(C),)/B*(T,sl2(C),). Au contraire, dans la version

champ, on a :

Corollaire 7.2.1. Le champ tangent au champ des caractéres au point p € R(I') est isomorphe d
HY(T,sl5(C),).

Démonstration. Rappelons que le champ tangent a un groupoide G =3 Gy est le champ donné par le
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groupoide T'G 3 T'Gy. On a alors

T1a,5[R(T)/SLy(C)] = [sly I',515(C),) = Z'(T,sl2(C),)]
=z )/Bl(F s15(C),)]
=H' (F 5[2(C) )

O

Considérons le champ X (I") (au dessus du site 2Ang) associé a I’analytifié du schéma affine R(I")// SL2(C),
c’est-a-dire la catégorie fibrée en groupoides dont les objets sont les U — X(T') avec U un espace C-

analytique et les morphismes sont les diagrammes commutatifs

U— U
N/
X(I)

avec U et U’ des objets de Anc.

Et regardons le foncteur

défini sur les objets par

avec fop=mo f Et définit sur les morphismes par

P— s p U—2
F pl lp/ — \ /
U5 X(T)

On sait par le théoréme 4.3.13 que les C-points de R(T")//SL2(C) sont donnés par les caractéres des
représentations p € R(I") (c’est-a-dire la fonction x, : I' — C définie par x,(v) = Tr(p(7))).

Proposition 7.2.2. Soit x, le caractére d’une représentation p € R(I"). La fibre de F' au dessus de x,,
noté F~1(x,), est catégoriquement équivalente au champ [w‘l(xpﬂmr)a /SLQ(C)].

Remarque. Le critére d’admissibilité de KASSEL s’exprime avec les longueurs de translation d’une repré-
sentation p, donc sur le caractére associé y,. On a alors que si p € R(I')* alors 7 !(x,) = R(I')*. On
peut donc dans la proposition (ainsi que dans la preuve) précédente retirer la restriction W’l(xp)‘ R(I)e
qui est triviale.

Démonstration. La fibre du foncteur F' au dessus du point x, est définie par le produit fibré

{Xxp} 25 [R(I)*/SL2(C)]
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Considérons le foncteur

G+ 57 00)/S2(©)] = () e [R(D)"/SLo(C)]

définit par G = (F,1d), c’est-a dire par

P % 7T'_1(Xp) P — 7T_1(Xp) P— 7T_1(Xp)
G P =|F pl ) pl
U U U
Or
f 1
P —— 7 '(x,)
F pl =U E X(I)
U

avec fop = WOf. Donc fop(P) = f(U) = x,.
Alors, ce foncteur vérifie Go P, = Id et P, o G = Id ou P, est le foncteur naturel qui projette
{xp} x [R(I')*/SLy(C)] sur le deuxieme facteur. O
X(I)

De maniére plus générale, on a

Proposition 7.2.3. Pour tout espace C-analytique U 4, X(T), la fibre de F au dessus de U est équiva-
lente a [7=1(f(U))/SL2(C)].

Démonstration. La preuve est analogue a la preuve précédente. On a toujours

(UL x [RI)/SLa(O)] = [((U 5 X)) x R)")/SLa(C)

et le produit fibré {U ER (T)} x R(T")* est évidemment isomorphe (comme espace C-analytique) &
x(T)

T H(f(U)). N

Remarque. Les représentations dans R(I") & orbites non-fermées sont, & conjugaison pres, les représenta-
tions de I' & image dans Aff(C).

7.2.1 Point de vue algébrique

Nous l’avons vu, le sous-ensemble R(T")* des représentations admissibles ne définit pas en général un
ouvert de Zariski (sauf dans le cas élémentaire by (I') = 0) et nous ne pouvons donc pas construire le
champ quotient correspondant dans une catégorie algébrique. Nous pouvons cependant définir le champ
quotient [R(I")/SLz2(C)] de la méme fagon que précédemment mais au dessus du site Seh. Nous laissons

le soin au lecteur d’adapter les définitions dans ce contexte.
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Avec ces considérations, il est intéressant de savoir comment ce comporte le foncteur

F: [R(T)/SLe(C)] — X(I)

entre champs au dessus du site Sch.

Nous avons évidemment le résultat analogue a la proposition précédente :

Proposition 7.2.4. Pour tout schéma U 4, X(T), on a léquivalence de catégorie

f _
{U = x([D)} s [R(L)/SL2(C)] ~ [7~1(f(U))/SL2(C)]

On rappelle qu’'un espace de module grossier associé a un champ algébrique X est la donnée d’un
schéma M et d’un morphisme ¢ : X — M tel que pour tout corps algébriquement clos k, les classes
d’isomorphismes d’objets de X(Spec(k)) sont en bijection avec M (Spec(k)) et tel que cette solution soit
universelle (tout autre morphisme de champs X — N, avec N un autre schéma, se factorise sur ¢). On

peut déduire des considérations du chapitre 4 la proposition suivante :

Proposition 7.2.5. Le foncteur
F:[R(T)/SL2(C)] — X(I)

est la projection sur l’espace de modules grossier.

De plus, il est bien connu que le sous-ensemble des représentations irréductibles R(T')"" est un ouvert
de Zariski dans R(T') et le quotient GIT X" (T') correspondant est un espace d’orbites. On a donc le

résultat suivant :

Proposition 7.2.6. La restriction du foncteur F
F:[R(I)""/SLy(C)] — X" (T)

est un isomorphisme de champ.

7.3 Fonctorialité

Etant donné un C®-difféomorphisme entre deux variétés compactes M et N admettant toutes deux
une structure complexe, il est une question assez naturelle de savoir comment sont « reliés »les espaces
de Teichmiiller 7(M) et T(N). Dans le cas que nous avons considéré jusque-la, un exemple facile &
construire est donné par les variétés SLo(C)/T et SLy(C)/T” ot TV est un sous-groupe d’indice fini dans

I'. L’intérét de cette construction est justifiée par les résultats suivants :

Proposition 7.3.1 (GHYS Théoréme 5.7 [31]). Soient T'y et 'y deuz sous-groupes discrets co-compacts
de SLo(C) et p; € R(I;), i = 1,2. Alors, toute application holomorphe surjective de My vers My est un

revétement, ot M; correspond au quotient de SLo(C) par laction de T'; via p; pour i = 1,2.

De plus, il est bien connu que les classes d’isomorphismes de revétements d’une variété X sont en

bijection avec les classes d’équivalence (par conjugaison) de sous-groupes de 71 (X ). On peut méme raffiner
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ce résultat et résumer la situation par le schéma suivant :

{Revétements de X}/ ~ AL {Sous-groupes de 71 (X)}/ ~
{Revétements finis d’ordre n de X}/ ~ AL {Sous-groupes d’indice n de m(X)}/ ~

~

{Revétements Galoisiens ﬁnis} 1:1 {Sous—groupes normaux d’indice}

d’ordre n de X n dans 71 (X)
On a donc le résultat suivant

Théoréme 7.3.2. Soient I'y et 'y deux sous-groupes discrets co-compacts de SLo(C). Alors, toute ap-
plication holomorphe surjective de SLa(C)/T'y vers SLa(C)/T'2 induit un foncteur Res (resp. Res®) les

champs de caractéres (resp. admissibles)
[Res] : [R(I'2)/SL2(C)] — [R(I'1)/SL2(C)]

(resp. [Res®] : [R(I'2)"/SLa(C)] — [R(I'1)*/SL2(C)])

Démonstration. Par la proposition précédente, une application holomorphe surjective entre ces deux
variétés est un revétement. Comme nous ’avons remarqué plus haut, les revétements a isomorphismes
prés de SLy(C)/T'y sont en bijection avec les sous-groupes, & conjugaison prés, de I's. Il existe donc
Il < I'y tel que I} est isomorphe a I'y. Par rigidité de Mostow (en projetant sur PSLy(C) puis en
relevant & SLo(C)), on sait qu'il existe € : I'y — {+1Id} et g € SLy(C) tels que I’} = €..4(T1). L'inclusion

de T} dans I's induit un morphisme de restriction
Res : R(I'2) — R(I'})

Cette application commute évidemment & l’action de SLy(C). De plus, I'isomorphisme que réalise €.,

entre I'y et '} induit un isomorphisme entre les variétés de représentations
Hom(e.ty,SLo(C)) : R(T}) — R(T1)

En composant cet isomorphisme et I'application de restriction, on obtient le résultat.

Pour le cas des variétés de représentations admissibles, il est facile de voir que la restriction d’une
représentation admissible sera aussi une représentation admissible. En effet, une fonction f : H?® —
H® (j, p)-équivariante k-Lipschitzienne sera aussi (j|r,, p|r,)-équivariante avec la méme constante de
Lipschitz.

Réciproquement, si p|r est admissible alors p lest aussi [42, lemme 4.4]. O

Remarque. On aurait envie de faire la méme construction pour I’espace de modules de Riemann, cependant
I’application de restriction ne définit pas, a priori, un isomorphisme au niveau des groupes des difféotopies
(8’ils sont bien égaux & Aut(T")/T).
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EXEMPLES

L’application des résultats présents dans cette theése, sur des exemples concrets, est une tache re-
lativement ardue pour plusieurs raisons et il est important de comprendre ces difficultés pour que la
construction faite dans la premiere partie de ce chapitre apparaisse naturellement. Pour donner explici-
tement des exemples qui mettent en lumiére le gain de cette thése par rapport aux travaux de [31] nous
avons évidemment besoin de trouver un sous-groupe discret co-compact et sans torsion dans SLs(C) ainsi
qu’une présentation de celui-ci. Mais, plus la présentation est compliquée, moins le critere d’admissibilité
sera évident. Puisque le premier nombre de Betti est, comme la théoreme 5.3.7 le suggere, un « indica-
teur »de la complexité de la géométrie de la variété des représentations, il est assez naturel de vouloir
regarder des exemples avec des petits premiers nombres de Betti.

Une approche possible, qui permettrai de construire des exemples correspondants a ces criteres, est
celle donnée par la chirurgie de Dehn sur des nceuds (ou des liens). En effet, si 'on considére un nceud
hyperbolique k, l'extérieur My de ce noeud est une variété & bord (qui est un tore) dont l'intérieur
admet une structure hyperbolique. La donnée de cette structure hyperbolique est équivalente a la donnée
d’une représentation de son groupe fondamental PSLy(C) mais puisque 'intérieur de cette variété n’est
évidemment pas compacte, nous ne sommes toujours pas dans le cadre d’étude de cette these (image de
cette représentation n’est pas co-compacte dans PSLy(C)). Une fagon de palier ce probléme est d’effectuer
une chirurgie de Dehn, c’est-a-dire de recoller un tore sur le bord de cette variété Mj. Cette opération,
comme nous le rappellerons dans le chapitre, ne dépend que de deux entiers (p, ¢) et par un théoréeme de
THURSTON, la variété obtenue, notée My(p, q), est hyperbolique sauf pour un nombre fini de couples (p, q).
De plus, a partir d’un noeud k, il n’est pas difficile d’obtenir une présentation du groupe fondamental de
My, et le théoréeme de Van-Kampen permet d’en obtenir une pour le groupe fondamental de M (p, q).

En résumé, pour un nceud hyperbolique k et deux entiers (p, ¢) pris en dehors d’un ensemble fini de
points de Z2, la variété My (p, q) est une variété hyperbolique compléte de dimension 3 et son groupe fon-
damental, dont on peut trouver une présentation explicite, admet une représentation fidele dans PSLy(C)
(qui se releve & SLy(C) par un autre théoreme de THURSTON) et on obtient ainsi des exemples. Et pour
certains d’entre eux, le critere d’admissibilité est exploitable.

Une autre possibilité pour obtenir de tels exemples est d’utiliser la base de donnée de SnapPy ! [18].

En particulier, ce logiciel permet d’obtenir une présentation du groupe fondamental d’une variété donnée.

1. SnapPy est un programme qui permet I’étude de la topologie et de la géométrie des variétés de dimension 3.
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Nous traiterons trois exemples, ordonnés par premiers nombres de Betti croissants :

b1 = 0 Reposant sur le principe expliqué plus haut et est donné par la (n, 1)-chirurgie (avec n = 5) sur le

neceud en huit.
by =1 Tiré de la banque de donnée de SnapPy.
by = 2 Utilisant une généralisation de la construction précédente a partir d’un lien.

Nous conclurons ce chapitre et cette these par une derniére remarque.

8.1 Groupes de noeuds et chirurgie de Dehn

Nous revenons dans un premier temps sur les définitions et théoréemes importants qui apparaissent

notamment dans la construction d’exemples rapidement donnée dans I'introduction.

8.1.1 Rappels sur la théorie de nceuds

On rappelle qu’un neud k est 'image d’un plongement différentiable du cercle S' dans R? ou dans

53, la sphere de dimension 3 vue comme compactifié d’Alexandrov de R3.

Définition 8.1.1. Soit k¥ un nceud dans S3. Le groupe du neeud associé a k est le groupe I'y, := (S — k)
et Uextérieur du neud est la variété compacte de dimension 3, My, := 53 — V (k) ot V (k) est un voisinage

tubulaire régulier de k.

De plus, a partir d’un « dessin »d’un neeud k, on peut trouver une présentation du groupe du nceud en
utilisant sa présentation de Wirtinger. Nous ne revenons pas sur 'algorithme qui permet cette écriture,

le lecteur intéressé pourra consulter [87].

Définition 8.1.2. On dit qu'un nceud k est hyperbolique si S — k admet une structure hyperbolique

(une métrique riemannienne compléte de courbure sectionnelle constante négative).

Un résultat classique de [97] affirme qu’une variété est hyperbolique si, et seulement si, on peut trouver
une représentation fidéle & image discréte de son groupe fondamental dans PSLy(C). Dans notre contexte,
un neeud est hyperbolique si 'intérieur de la variété M}, est hyperbolique et donc si ’on peut trouver une
représentation fidele et discrete du groupe fondamental de 'intérieur de My, qui sera alors un réseau non
co-compact de PSLy(C).

Notons qu'’il existe une interaction entre les groupes d’homologie et de cohomologie de M} et ceux
de T'y. En effet M, = T}, \H® est un espace classifiant pour I';, (puisque H® est contractile) et donc
H(My) = H(Tk). De plus, le nombre de Betti d’un tel groupe est toujours égal a 1.

Evidemment, ces variétés ont un bord (homéomorphe & un tore) et ne rentrent pas tel quel dans
la théorie développée ici. On peut cependant appliquer le remplissage de Dehn a une telle variété pour

obtenir une variété sans bord.
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8.1.2 Remplissage de Dehn

Prenons donc une variété hyperbolique M de dimension 3 donnée par 'extérieur d’un nceud & (hy-

perbolique donc) et considérons un homéomorphisme
h:0D* x §' — oM,
et considérons la variété My, (h) obtenue par recollement du tore plein via h :
M, Uy D? x SY:= My, L D* x S*/h(z) ~ x

Définition 8.1.3. Dans un tore plein D? x S', on appelle méridien le lacet 0D? et on appelle longitude

un lacet homologue & zéro dans S3 — (D? x S1).

Si on découpe dD? x S! le long du méridien et de la longitude, toute courbe fermée simple de ¢D? x S!
peut étre représentée par une droite de pente p/q € Q U {00} et cette courbe est homotope & pm + gl avec
P, q € Z deux entiers premiers entre eux.

l

\
L4

Ye—

m/\ /\m m/\ p/q /\m

>
l
FIGURE 8.1 — Redressement les lacets sur le tore

Lemme 8.1.4. Dans la construction précédente, le type d’homéomorphisme de h est entierement déter-

miné par la pente h(0D? x {x}), ou de facon équivalente par la paire (p,q).

Définition 8.1.5. Soit M une variété de dimension 3 dont le bord est un tore. On appelle (p,q)-
remplissage de Dehn le recollement d’un tore plein sur le bord de M via un homéomorphisme de type

(p,q). On note M(p, q) la variété ainsi obtenue.
Nous avons le résultat suivant :

Théoréme 8.1.6 (Thurston). Soit k un neeud hyperbolique. Pour toute paire (p,q) € 72, la variété
My (p, q) est hyperbolique sauf pour un nombre fini de paires (p,q).

Un grand intérét de considérer les variétés fournies par ce procédé est qu’étant donnée une présentation
du groupe associé au noeud k, le théoreme de Van-Kampen permet de connaitre une présentation du

groupe fondamental de My(p, q) facilement.
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Prenons par exemple, la présentation de Wirtinger d’un nceud k& :
<$15"' ,an|7"1,"‘ aTh>

avec comme méridien m 1’élément x; et comme longitude [ un mot en les x;. Alors, le théoreme de

Van-Kampen affirme que
7T1(Mk(p, Q)) = <x1> T axn‘ T, 5 Thy mplq>

On peut résumer la construction rapidement expliquée dans 'introduction dans le schéma suivant

Exterieur Présentation
‘ My, = S3 — N(k) ‘ du —— de —— | présentation de m (My) avec by = 1
noeud WIRTINGER
(p, q)-chirurgie Théoreme de
I |
de DEHN de VAN-KAMPEN
l Rigidité l
My (p,q) de \m(Mk(p, q)) avec by = 0,1
MosTow
Fibré des Variété des
reperes représentations
l Champ Restriction i
FM(p,q) | —— de —— [ [R(m1 (My(p.4)))*/ SLa(C)] | «—— et —— [ R(m1 (My.(p, 0)))
TEICHMULLER quotient

FIGURE 8.2 — Schéma de construction de sous-groupes I' discrets co-compacts.

8.1.3 (n, 1)-Chirurgie sur le nceud en huit (b; = 0)

Soit & le nceud en huit représenté en figure 8.3.

&

FIGURE 8.3 — Noeud en huit

Considérons la présentation de Wirtinger de My, [87] :

m1(My,) =<a,b,c,d|da = cd (1), be = ca (2), ¢b = bd (3), ba = ad (4))
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et simplifions cette présentation en réécrivant les relations (3) et (4) en

b =ada~*

c=bdb~t < ¢ = ada"*dad ta"
En remplagant dans les relations (1) et (2), on remarque que ces relations donnent lieu une méme relation
ada ™ dad 'a™'d = da
On obtient ainsi une présentation du groupe fondamental de My, :
71 (My,) = {a,d|ada " dad " a " da"d™ ")

dont on sait que le méridien est m = a et la longitude est [ = a='b~taba~'bab~!.
Puisque le nceud en huit est achiral ? on sait que My, (p,q) = My, (—p, q). Et puisque la chirurgie de
Dehn ne dépend que de la fraction p/q, on a évidemment My, (p,q) = My, (—p,—q), on peut donc se

restreindre a p,q = 0.

Théoréme 8.1.7 (THURSTON, [97, Théoréme 4.7]). La variété My, (p,q) est hyperbolique pour tout couple
(p,q) € N? différents de (1,0), (0,1), (1,1), (2,1), (3,1) ou (4,1).

Soit m un entier plus grand que 5. Avec les rappels précédents, on peut facilement trouver une pré-
sentation du groupe m(My, (n,1)) :
71 (My, (n,1)) = {a,d|ada " dad  a"'da"'d™*, a" b aba " bab™ ")
et 'on a
(w1 (My, (n, 1)) = (a,d|d = a, ") ~ Z/nZ

Dont on déduit by (m1(My, (n,1))) = 0. Pour simplifier les calculs qui suivront, faisons un changement

dans la présentation de m1(My,) par d’ = da~"' de sorte que
(ﬂ-l (M41 (TL, 1)))ab = <CL, b | b, an> = Z/RZ

Toutes les représentations abéliennes se factorisent sur (m;(My, (n, 1)))ab ~ Z/nZ et on en déduit :

Lemme 8.1.8. Si limage de p € R(I') est un sous-groupe fini de SLy(C), alors il est admissible et
W (o) = B ().

Démonstration. L’admissibilité découle directement du théoréme de KASSEL (théoréme 18) puisque p &
forcément une image contenue dans un compact.
Pour la dimension des groupes de cohomologie, il suffit de remarquer que la suite inflation restriction
associée a la suite exacte
0> Ty :=ker(p) > T — p(I') >0

2. c’est-a-dire superposable a son image dans un miroir
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& valeur dans H, == H°(SLy(C),7*0,) est

0 ——— HY(p(l), H,0) ———— H'([,H,)

H'(To, H,)"") —— H*(p(T'), HLo)

donne directement un isomorphisme entre les groupes
Hl(Fv Hy) ~ Hl(FO’ Hp)p(r)

puisque la cohomologie d’un groupe fini est concentrée en degré 0.

De plus, I'y est un sous-groupe d’indice fini dans I' et est donc encore un sous-groupe discret co-
compact de SLy(C). Il s’ensuit que le plongement du I'p-module trivial C dans H,, induit un isomorphisme
entre les premiers groupes de cohomologie (comme dans le cas traité par E. GHYS). On obtient alors le
résultat. O

On obtient alors la proposition suivante :

Proposition 8.1.9. Soitn > 5. Notons T, une SLa(C)-représentation fidéle et discréte de my (Mg, (n, 1)).
Alors,
#mo(T(SL2(C)/Ty)) = n

Démonstration. Par les arguments évoqués précédemment, nous savons que les représentations p,,, définies

e?iﬂ'm/n 0
pm(a) = ( 0 672iﬂ'm/n ’ pm(b) = Id

sont toutes admissibles. Et évidemment non conjuguées. Le résultat découle donc de I'annulation de

par

la dimension du groupe H!(T,,sly(C)?™), correspondant & l'espace tangent du champ de caractéres
admissibles.
Puisque p,, est abélienne, la représentation laisse stable 3 sous-modules de sl2(C) et le groupe

ZY(T,,,sl5(C)Pm) se décompose alors en trois espaces
Z! (T, 5k(C)) ~ Z'(0y,C™) @ 21 (T, C2") @ 27 (T, C)

Le dernier élément de cette décomposition est facile a calculer puisque la structure de I',-module de ces
coefficients est triviale et on déduit Z'(T',,, C) = Hom(T,,,C) = C**(') et il est donc de dimension nulle.

De plus, Z(I',,C™) ~ Z*(T,,,C”™), on restreint donc I'étude & Z!(I',,Ci™). Les relations de I',,
et les conditions de cocycle permettent de calculer explicitement les équations que doivent satisfaire les
applications ¢ : I, — C4™ pour définir des éléments de Z*(T',,, C5™). Notons w := (62”’”/”)2 et soit

ce C1(T,,,C"?). Les conditions de cocycles s’écrivent
c(as) = c(a) + we(s), c(bs) = c(b) + c(s)
ol s est un mot en a, a~ ', b et b~ L.
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En utilisant ces conditions de cocycles, la premiere relation de I',, devient :
0= c(ab®*ab™ta"2b71)

c(a) + we(®®ab™ra2p71)
= c(a) + 3we(b) + we(ab™ta?b71)

= 2we(a) + (=1 + 3w — w?)c(b)
Qui est non-triviale pour tout m € N. Et la deuxiéme relation est en fait triviale, puisque :

0=c(a" v aba"tbab™t)
c(a" M) +w" te(btaba " bab ™)
(I+w+-+wHe(a) +w" e + w" te(aba bab™t)
=(14+w+-+w"cla) —w" telb) +w te(a) + we(ba” bab™t)
( )
(

l+w+--+w" He(a) - "1cb)+c(ba Ybab™t)
He(a) —we(d) 4+ cb) + e(ah) +wre(d) + wlela) + e(07)

Puisqu'un cocycle ¢ € Z(T,,,C ™) est défini par ses images c(a) € C et ¢(b) € C et doit respecter une

condition linéaire, on conclut que
dim Z'(T,,,CA") =2—-1=1
Finalement on a

dim H'(T',,, sl5(C)"™) = dim Z*(T',, C) + 2dim Z'(T',,, C5™) — dim B*(T',,, s12(C)*™)
=2x1—-3=h"%pnm))
=2-3+1=0

comme annonce. O

Pour conclure cet exemple, terminons par une observation qui montre I'apport de nos résultats. Le
théoréme principal de [31] nous permet d’affirmer que l'espace de Kuranishi de SLy(C)/T,, est un point.

Ici nous montrons que l'espace de Teichmiiller de cette variété admet au moins n composantes connexes.

8.1.4 Variété m199(—4,1) (b; = 1)

Le choix, dans la base de données de SnapPy, de I’exemple qui suit est un peu arbitraire, cependant

le colit de calcul d’une représentation fidele et celui du critere d’admissibilité nous pousse vers le choix
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d’une variété hyperbolique de dimension 3 admettant un groupe fondamental dont la présentation admet
des relations les plus courtes possibles.
Parmi les variétés qui satisfont ces critéres, nous proposons de traiter le cas de la variété m199(—4, 1)

dont le groupe fondamental admet la présentation suivante
71 (m199(—4,1)) = {a,b| (a*b~ 1) (a®*v*)%a*b~ !, b(a10*)*a " ba"2b"2a"2)

Afin de simplifier les notations, notons I' := 71 (m199(—4, 1)).

Une représentation fidele et discréte ¢ de ce groupe dans SLo(C), donnée par SnapPy, est approchée

(@ 0 0,8 + 0,92 ®) —0,01+2,35i 0,29 — 2,57
i(a) ~ , 1(b) ~
~0,53+0,61i 0,41 — 0,61 1,39 +1,6i 1,71 — 2,02

par

Puisque b;(T") = 1, on sait que pg est un point lisse de R(T")® [31] et on a alors

Proposition 8.1.10. I existe un réel o tel que l’on ait une application injective
¢: By "V >R

ot B, est la boule centrée en 1d € SLy(C) déterminée par les matrices de rayon spectral strictement

inférieur d o

Démonstration. Nous I’avons déja vu, toute représentation de I' qui se trouve dans la composante connexe

de la représentation triviale est abélienne (puisque b(I') = 1) et se factorise donc sur
r* = (a,b|a®b, [a,b])

Une représentation abélienne p est alors entierement déterminée par son image sur a. De plus, 'admissi-
bilité d’une telle représentation p s’exprime sur la longueur de translation de p et donc uniquement sur la
matrice p(a). Pour que p soit admissible, il suffit donc que cette longueur de translation soit strictement
inférieur a celle de i(a), que ’on note «.

L’application ¢ est alors obtenue de la facon suivante :
¢: A€ By— pacR()

avec p4 définie par

En combinant cette proposition avec le théoréme 6.4.5 on obtient alors

Corollaire 8.1.11. Soit z€ C, 1 < |z| < 1.3 tel que p, € V définit par

z 0 272 0
p=(a) = (0 Z_1>a p=(b) = ( 0 Z2>
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alors, la famille de Kuranishi de M, est donnée par le germe de la famille

(M, . | eeD}

D
pointée en 0.

On laisse au lecteur le soin d’appliquer de la méme maniere le deuxiéme cas du théoreme 6.4.5.

En identifiant les représentations conjugués, on a le corollaire suivant :

Corollaire 8.1.12. [l existe un réel o > 1,3 tel que l’on ait une injection
(Ba nV)/ ~= T(SL2(C)/i(m1(m199(—4,1))))

ou A ~ B si les deux matrices sont conjuguées.

8.1.5 ((0,1),(0,1))-chirurgie sur le lien 9% (b; = 2)

Avant de continuer avec un troisiéme exemple, il nous sera utile de « classifier »les différentes représen-
tations selon des criteres utiles au calcul. Plutot que de faire une liste de définitions puis de propositions,

nous résumons cette classification dans un tableau. Voici d’abord quelque notations :

e B c SLy(C) le sous-groupe de BOREL, c’est-a-dire le groupe des matrices triangulaires supérieures,

P < SL5(C) le groupe des éléments paraboliques, c’est-a-dire les matrices triangulaires supérieures

avec +1 sur la diagonale,
e Diag < SLy(C) le groupe des matrices diagonales,

o Z = {£1d} < SLy(C) le centre de SLy(C).

Soit I ¢ SLy(C) un sous-groupe discret co-compact et soit p € R(T'). A conjugaison pres, on a :
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Nom Critére Propriétés
non-abélienne
irréductibl
Irréductible o) ¢ B frreducetible
h(p) =0
O(p) fermée
T e B non-abélienne
p(T') = ,
éductibl
non-abéliennes réductibles reO tetibie
o(T) & P ilp) =0
O(p) non-fermée
) P abélienne
pL) < . .
réductible
Parabolique
o(T) & 2 hp) =1
O(p) non-fermée
(T') < Di abélienne
c Dia,
Di I r & completement réductible
iagonale
p(1) ¢ Z h(p) =1
O(p) fermée
triviale
Central r) 7 complétement réductible
entrale c
g W(p) = 3
O(p) fermée

Le lien entre la compléte réductibilité et la fermeture de lorbite d’une représentation est fait dans [90,

Theorem 30] et celui entre le critére abélien et la fonction hY est le théoréme 5.3.6.

Considérons le lien 97 et faisons simultanément deux (0, 1)-chirurgies de Dehn sur chacun des nceuds.

<\-,\
&

FIGURE 8.4 — Lien 92
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La variété obtenue est une variété fermée orientable avec un premier nombre de Betti égal a 2. Elle a été
découverte par DUNFIELD et a un volume de 4.7135- - -, c’est aussi une variété qui fibre sur le cercle avec
une surface de genre 2 comme fibre (voir [30]). Elle est répertoriée dans SnapPy sous le nom v1539(5, 1)

mais nous nous contenterons du nom plus sobre de M.
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Une présentation de son groupe fondamental est
71 (M) = {a,b| (ab)?a(ab) 20~ (ab)?a(ab) 26 (ba) "2, a*(ab) ~2b* (ba)~2)

Pour les représentations non-abéliennes, nous nous servirons du lemme suivant :

Lemme 8.1.13. Soit A et B deuz matrices non commutantes dans SLo(C). Alors, & conjugaison prés,

e z 1 7 B y 0
0 z! r oy !

On commence par construire une représentation 4 fidele et discrete de 1 (M). Soit

oy [z 1 i) — y 0
z<a>—<0 m) <")‘<r y1>

Les calculs avec Sage affirment que la relation a*(ab)~2 — babab=* = 0 donne, par exemple,

28+ 3z +1

=zetr=—
Y x0 + 22

Avec ces considérations, la premiére relation nous donne z = %\/ —iv/15 — 1.

Posons T' := i(m(M)) et regardons maintenant les représentations de ce groupe, non injectives. On

remarque que :

e Les calculs a effectuer pour montrer I'admissibilité d’autres représentations irréductibles sont en
général difficiles,

e En revanche, pour les représentations non-abéliennes réductibles, en utilisant le lemme on peut

supposer r = 0 et les relations du groupe 71 (M) donne deux relations :
2y = 1) +at (P —y )+ () )~y P =0

et
PP -+ -y - D+ (P D) -yt P =0

on obtient ensuite par le calcul 5 solutions a ce systeme dont on déduit 5 représentations non-

abéliennes réductibles approximées par

pla) p(b)

—0,31 +0,82i 1 0,53 +0,77i 0

( 0 (=0,31 +0, 822')‘1) ( 0 (0,53 + 0, 772‘)‘1)
—0,18 + 0, 75i 1 —0,54 F 0, 69i 0

( 0 (=0,18 £ 0, 752’)1) ( 0 (—0,54 F 0, 691‘)1)

1,09 —-0,77¢ 1 1,1-0,35: 0
0 (1,09 —0,77i)~* 0 (1,1-0,35i)"1

la encore, le critere d’admissibilité n’est pas exploitable par le calcul dans ce cas.
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e Remarquons que dans le cas de représentations abéliennes, les relations deviennent triviales et on
obtient que I’ensemble des représentations abéliennes est isomorphe a ’espace des paires de matrices
commutantes.

Evidemment, toutes les paires de matrices ne permettent pas de former une représentation ad-
missible. On peut cependant se restreindre & un compact de SLy(C). On en déduit le corollaire

suivant

Corollaire 8.1.14. On a le plongement suivant
{(A,B) e SU(2) x SU(2) | [A,B] =1d} nV — R(I")*

Démonstration. Pour chaque paire de matrices (4, B) € SU(2) x SU(2) on définit une représentation

par p(a) == A, p(b) == B et le raisonnement précédent en assure 'admissibilité. O

8.2 Représentations a image Zariski-denses

Nous terminons cette thése par une remarque.

En démontrant la virtually Haken conjecture en 2012, AGOL démontra le résultat suivant :

Théoréme 8.2.1 (Corollary 1.2 [2]). Soit M une variété hyperbolique fermée de dimension 3. Alors, il
existe un revétement fini M — M tel que M fibre au dessus du cercle. De plus, w1 (M) est LERF et large,

c’est-a-dire qu’il existe un sous-groupe normal N < G qui se surjecte sur un groupe libre non-abélien.

Avec ce résultat, on peut construire des représentations admissibles a image Zariski-denses. On consi-
dére un sous-groupe discret co-compact I' dans SLy(C), par le lemme de SELBERG, quitte & prendre
un sous-groupe d’indice fini, on peut le supposer sans torsion. On utilise le résultat précédent qui nous
affirme l’existence d’un sous-groupe normal I'y d’indice fini dans I' qui se surjecte sur Fy le groupe libre a
deux générateurs. Un théoréme de KURANISHI [64, Theorem 7] assure que 1’on peut trouver des éléments
a et b dans un voisinage arbitrairement petit de Id dans SLo(C) tel que le groupe (a, b) soit Zariski-dense
dans SLs(C).

Cette construction fourni de nombreux exemples de représentations admissibles qui ont en particu-
lier des images non-abéliennes (confer les exemples donnés par GHYS [31, p. 135-136]). Je remercie N.

THOLOZAN pour m’avoir suggéré cette construction.
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Titre : "On the Teichmiiller stack of SLy(C)/T".

Résumé : Let I" be a discrete torsion-free co-compact subgroup of SLo(C). E. GHYS has shown in [31] that
the Kuranishi space of M = SLy(C)/T is given by the germ of the representation variety Hom(I", SLy(C))
at the trivial morphism and gave a description of the complex structures given by representations. In
this note, we prove that for any admissible representation, i.e. which allows to construct compact com-
plex manifold by this description, the representation variety (pointed at this representation), leads to a
complete family (even at non-reduced singular points). Hence, we will consider the (admissible) character
stack [R(T')*/SL2(C)], where R(T')* stands for the open subset formed by admissible representations
with SLy(C) acting by conjugation on it and show that this quotient stack is an open substack of the
Teichmiiller stack of M.
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Titre : Espace de Teichmdiller du fibré des repéres d’une 3-variété hyperbolique réelle.

Mot clés :

Résumé : Cette thése a pour but de poursuivre et
de généraliser, en utilisant le point de vue global of-
fert par les champs, 1’étude locale faite par GHYS
concernant les déformations des structures complexes
des espaces homogenes de SL2(C). Dans cet article,
I’auteur montre que la déformation de 1'holonomie de
la (SL2(C) x SL2(C), SL2(C))-structure compléte d’un
quotient SLy(C)/T" (ot I' est un sous-groupe discret
de SL2(C), co-compact et sans torsion) permet de
construire une famille de structures complexes sur ce
quotient. Plus précisément, il montre que le germe ana-
lytique de la variété de représentation R(I') de I' dans
SL2(C), pointée au morphisme trivial, détermine 1’es-
pace de Kuranishi de SLy(C)/I". Nous montrons que
par cette méme construction, la famille tautologique au
dessus d’un ouvert de Zariski V' de R(I') reste com-
plete en chaque point correspondant une représenta-
tion admissible, c’est-a-dire qui correspond & 1’holono-
mie d’une structure complete. Par ailleurs, les travaux
de KASSEL sur ’admissibilité de ces représentations per-
mettent d’affirmer que ’ensemble des représentations

Théorie des déformations, variétés de représentations et champs analytiques.

admissibles R(I")* constitue un ouvert de R(I"). Notons
que SL2(C) agit par conjugaison sur R(I')* en préser-
vant les classes d’équivalence de structures complexes
et, qu’en général, la non-trivialité des SLy(C)-orbites
met en défaut le critere de versalité de cette famille. Fi-
nalement, le calcul du groupe des automorphismes C'*-
isotopes a l’identité, qui correspond au groupe d’isotro-
pie d’une structure complexe dans ’espace de Teichmiil-
ler, permet d’affirmer que le champ quotient V/SLy(C)
est un sous-champ ouvert du champ de Teichmiiller de
SL2(C)/T. Pour terminer, remarquons que le fibré des
repéres d’une variété M compacte hyperbolique fermée
de dimension 3 s’identifie naturellement au quotient de
PSL3(C) par une PSLy(C)-représentation fidele et dis-
créte de 71 (M). Par un résultat de THURSTON, cette re-
présentation se reléve toujours & SL2(C) et on peut donc

—_—

voir le quotient SL2(C)/m1 (M) comme un double revé-
tement du fibré des reperes de M. Ceci justifie I’'abon-
dance de ces espaces ainsi que le nom donné a cette
these.

Title: Teichmdiller space of the frame bundle of a real hyperbolic 3-fold.

Keywords: Deformation theory, representation and analytic stacks.

Abstract: This thesis aims to pursue and general-
ize, by using the global point of view offered by the
stacks, the local study made by GHYS concerning the
deformations of complex structures of the homogeneous
spaces of SL2(C). In this article, the author shows
that the deformation of the holonomy of the com-
plete (SL2(C) x SL2(C), SL2(C))-structure of a quotient
SL2(C)/T" (where I is a discrete subgroup of SL2(C),
co-compact and torsion free) allows to build a family
of complex structures on this quotient. More precisely,
he shows that the analytic germ of the representation
variety R(I") of I" in SL2(C), pointed at the trivial mor-
phism, determines the Kuranishi space of SL2(C)/I". We
show that by this same construction, the tautological
family above a Zariski open subset V' in R(I") remains
complete at each point corresponding to an admissi-
ble representation, i.e. which corresponds to the holon-
omy of a complete structure. Moreover, KASSEL’s work
on the admissibility of these representations allows us

to affirm that the set R(I")* of admissible representa-
tions is open in R(I"). Note that SL2(C) acts by con-
jugation on R(T")® preserving the equivalence classes of
complex structures and, in general, the non-triviality
of SLy(C)-orbits implies the non-versality of this fam-
ily. Finally, the computation of the group of automor-
phisms which are C*-isotopic to the identity, which cor-
responds to the isotropy group of a complex structure
in Teichmiiller space, allows us to affirm that the quo-
tient stack V/SL2(C) is an open substack of the Teich-
miiller stack of SL2(C)/T". To finish, let us notice that
the frame bundle of a closed hyperbolic compact man-
ifold M of dimension 3 is naturally identified with the
quotient of PSL2(C) by a faithful and discrete PSL2(C)-
representation of 71 (M). By a result of THURSTON, this
representation lifts to SL2(C) and we can therefore see

—_—

the quotient SL(C)/m1 (M) as a double covering of the
bundle of reference frames of M. This justifies the abun-
dance of these spaces as well as the name of this thesis.
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