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RÉSUMÉ

Depuis les travaux de M. Kuranishi à la fin des années 1950, la théorie des déformations de
structures complexes, sur les variétés complexes compactes, à été largement développée. Jusqu’à

récemment, l’étude de ces déformations était surtout locale, infinitésimale, sauf dans certains cas en basse
dimension. Les travaux de Teichmüller ont, par exemple, permis de montrer que l’espace de Teichmüller
d’une surface S, c’est-à-dire l’espace des classes d’équivalence de structures complexes sur S isotopes (via
un C8-difféomorphisme) à l’identité, admet une structure de variété complexe. Par ailleurs, nous savons
qu’en général, l’espace de Teichmüller d’une variété compacte orientée n’admet pas de structure de variété
ni même de structure d’espace C-analytique. Ce phénomène est dû, en grande partie, à l’existence de
saut de la dimension des groupes d’isotropie. Ce n’est qu’en 2019 que L. Meersseman a donné dans
[74], une structure de champ analytique (en explicitant un atlas de ce champ) à l’espace de Teichmüller
d’une variété complexe compacte sous une hypothèse relativement souple (précisément, il faut que les
dimensions des groupes d’automorphismes C8-difféomorphes à l’identité soient bornées).

Parallèlement, les travaux [31] d’E. Ghys, ont permis d’établir que l’espace de Kuranishi des variétés
de la forme SL2pCq{Γ, où Γ est un groupe discret co-compact agissant librement et de façon totalement
discontinue, est donné par le germe analytique de la variété de représentation HompΓ,SL2pCqq pointée
au morphisme trivial ρ0 : Γ Ñ Id P SL2pCq. Il est montré dans cet article que les déformations de l’holo-
nomie de la pSL2pCq ˆ SL2pCq,SL2pCqq-structure naturelle de SL2pCq{Γ, via la variété de représentation,
donnent lieu à de nouvelles structures complexes et que la famille correspondante est complète, c’est-à-
dire que toute déformation de la structure complexe de SL2pCq{Γ suffisamment petite est donnée par la
déformation de cette holonomie. De plus, SL2pCq agit par conjugaison sur cette variété de représentations
en préservant les structures complexes.

Une question à laquelle répond cette thèse est de savoir s’il est possible, par ce procédé, de construire
l’espace de Teichmüller, ou au moins un ouvert de celui-ci, des variétés SL2pCq{Γ. Nous montrons qu’ef-
fectivement, la famille tautologique au dessus de la variété de représentation est toujours complète sur
un ouvert de Zariski (analytique) de celle-ci et que le quotient champêtre de cet ouvert par l’action de
conjugaison par SL2pCq, que l’on appellera champ de caractères admissibles, est bien un ouvert du champ
de Teichmüller.

Notons qu’une variété SL2pCq{Γ est naturellement identifiée au fibré des repères de la variété hyper-
bolique H3{Γ, ce qui justifie pleinement le nom donné à cette thèse.
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Contributions

Fixons Γ un sous-groupe discret co-compact et sans torsion dans SL2pCq ainsi que γ1, ¨ ¨ ¨ , γn des
générateurs et R1, ¨ ¨ ¨ , Rm des relations. Notons RpΓq le sous-schéma de SL2pCqn défini par les équations
induites par Ri “ Id, i “ 1, ¨ ¨ ¨ ,m. Un point de ce schéma correspond à une représentation ρ de Γ dans
SL2pCq et celle-ci permet de définir une action de Γ sur SL2pCq via

Γ ˆ SL2pCq Ñ SL2pCq, pγ, xq ÞÑ ρpγq´1xγ

Remarquons que si ρ “ ρ0 où ρ0 : Γ Ñ Id est la représentation triviale, on retrouve l’espace homogène
SL2pCq{Γ.

Définition. Lorsque cette action est libre et totalement discontinue, nous dirons que ρ est admissible et
noterons Mρ la variété complexe compacte obtenue comme quotient de SL2pCq par cette action.

Remarquons que SL2pCq agit par conjugaison sur RpΓq en préservant (à biholomorphisme près) les
structures complexes induites. Avec ces notations, le théorème d’E. Ghys s’énonce de la façon suivante

Théorème ([31, Théorème A]). La famille tautologique au dessus de pRpΓq, ρ0q est complète et verselle.

Notons RpΓqa le sous-ensemble de RpΓq correspondant aux représentations admissibles. Nous savons,
par des travaux de F. Guéritaud, O. Guichard, F. Kassel et A. Wienhard [41, Corollary 1.18.] que
RpΓqa est un sous-schéma ouvert de RpΓq. Nous montrons dans cette thèse, la généralisation du théorème
1 suivante :

Théorème (théorème 6.0.1). Si RpΓqa n’est pas partout non-réduite, alors il existe un ouvert de Zariski
(analytique) V Ă RpΓqa pour lequel la famille tautologique au dessus de V est complète en tous points.

La non-trivialité des SL2pCq-orbites des représentations non centrales (c’est-à-dire à image contenue
dans le centre dans SL2pCq) met en défaut le critère de versalité de cette famille. Celui-ci peut être
retrouvé en considérant une tranche localement transverse aux SL2pCq-orbites :

Corollaire (théorème 6.4.1). Soit ρ P RpΓqa. Alors, tout espace C-analytique Z contenant ρ et localement
transverse aux SL2pCq-orbites définit (en tant que germe, pointé en ρ) l’espace de Kuranishi de Mρ.

De plus, il est possible dans certains cas de donner une expression explicite des espaces de Kuranishi
des variétés Mρ.

Nous donnons par ailleurs, le groupe des automorphismes C8-difféomorphes à l’identité (correspon-
dant au groupe d’isotropie d’un point dans le champ de Teichmüller) :

Proposition (théorème 5.4.5). Pour ρ P V , le groupe Aut0
pMρq X Diff 0

pMρq est isomorphe au centra-
lisateur de ρpΓq dans SL2pCq.

Ce qui nous amènera à la généralisation suivante :

Théorème (théorème 7.1.4). Le champ de caractères admissibles rV { SL2pCqs est un sous-champ ouvert
du champ de Teichmüller de SL2pCq{Γ.
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Finalement, par le théorème de rigidité de Mostow, nous avons de façon analogue :

Théorème (théorème 7.1.6). Le champ quotient rV { ppSL2pCq ˆ AutpΓqq{Γqs est un sous-champ ouvert
du champ de modules de Riemann de SL2pCq{Γ.
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NOTATIONS

Groupes et algèbres de Lie
SLnpKq le groupe des matrices nˆ n à coefficients dans K déterminant 1
SOnpKq le groupe des matrices orthogonales nˆ n à coefficients dans K déterminant 1 (charpKq ‰ 2)
SUpnq le groupe des matrices unitaires nˆ n à coefficients complexes de déterminant 1
PG où G est un groupe de Lie est le quotient de G par son centre ZpGq

Spinpnq le groupe Spinoriel, revêtement universel de SOnpRq

sl2pCq l’algèbre de Lie de SL2pCq

Notations générales
ιgpXq conjugaison de X par g
Lg (resp. Rg) la multiplication à gauche (resp. à droite) par g
StGpHq stabilisateur de H dans G
OpHq G-orbite de H, notée simplement OpHq lorsqu’il n’y a pas d’ambiguïtés
AutpMq groupe d’automorphismes complexes de M
Aut0

pMq composante connexe du groupe d’automorphismes (complexes) de M
Γ sera généralement un sous-groupe discret de SL2pCq

RpΓq schéma des représentations de Γ dans SL2pCq

Hn l’espace hyperbolique de dimension n

Catégories
AnC la catégorie/le site des espaces C-analytiques de dimension finie
Sch la catégorie/le site des schémas
Top la catégorie/le site des espaces topologiques
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INTRODUCTION

1 Aperçu historique

Si « la mathématique est l’art de donner le même nom à des choses différentes », la no-
tion de problème de modules est certainement celle qui illustre le mieux le propos de Henri Poincaré,

auteur de cette citation. L’origine des problèmes de modules remonte à Riemann, essayant de trouver
le nombre de paramètres de l’espace des classes d’équivalences de variétés complexes compactes de di-
mension 1 et de genre g. L’étude de cet espace complexe Mg à été largement intensifiée notamment par
Teichmüller et plus récemment par Grothendieck, Deligne ou encore Mumford dans un langage
catégorique.

En géométrie analytique, un des problèmes de modules est celui qui consiste à trouver une structure
analytique naturelle (en un certain sens, à préciser selon le contexte) sur l’espace des classes d’équivalences
de structures complexes qu’une variété différentiable compacte (supposée orientable et de dimension paire)
admette.

Les premiers travaux allant dans ce sens, sont ceux de Teichmüller (bien plus louables que ses
convictions politiques) qui ont permis de donner une structure à l’espace des paramètres des classes
d’équivalences (à difféomorphismes isotope à l’identité près) de structures complexes sur une variété com-
plexe Σ de dimension 1 et de genre g ě 2. Plus précisement, un théorème dû à Teichmüller, Ahlfors,
Bers, Fricke et Goldman affirme que l’espace de Teichmüller de Σ noté T pΣq admet une structure
de variété kählerienne de dimension 6g ´ 6. De plus, le groupe des difféotopies de Σ agit proprement et
de façon totalement discontinue en préservant la structure kählerienne qui descend donc au quotient :
l’espace de modules de Riemann MpΣq. Notons que le célèbre théorème d’uniformisation de Poincaré
donne une correspondance entre cet espace de Teichmüller T pΣq et l’espace des structures hyperboliques à
isotopie près. Puisque qu’une telle classe de structures correspond à celle d’une représentation Fuschienne
(à image injective et discrète) du groupe fondamental de la surface considérée dans PSL2pRq, on peut
voir T pΣq comme une composante de la variété de caractères HompπpΣq,PSL2pRqq{ PSL2pRq.

Depuis, des exemples en dimensions supérieures ont montré que l’espace de Teichmüller n’admet pas,
en général, ni de structure de variété ni d’espace analytique (voir [74, §12] pour des exemples). Cela
force donc à élargir la notion de structure analytique. Ce sont les travaux de Laurent Meersseman [74]
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qui permettent, sous une hypothèse assez peu restrictive, de munir l’espace de Teichmüller d’une variété
X d’une structure de champ analytique (voir le chapitre 2 pour les définitions). Plus rigoureusement,
soit X est une variété différentiable compacte (orientable et de dimension paire) et V est un ouvert de
l’espace IpXq des structures presques complexes intégrables sur X. S’il existe un entier a tel que pour
toute structure complexe J dans V , le groupe d’automorphisme de pX, Jq soit de dimension inférieure à
a, alors l’espace de Teichmüller de X admet une structure de champ analytique, au sens où il admet un
atlas analytique : son groupoïde d’holonomie.

Même si la construction de ce groupoïde d’holonomie est faite dans l’article [74] il est, en général,
difficile de donner explicitement un atlas plus agréable pour le champ de Teichmüller d’une variété X
fixée. Celui des tores est maintenant bien connu (voir encore [74] ou exemple des tores 2.G) et un autre
exemple est celui construit par Clément Fromenteau dans sa thèse pour les variétés de Hopf.

Historiquement, pour répondre au problème de modules des structures complexes, une première ap-
proche fut celle apportée par les outils développés par Kodaira, Spencer et Kuranishi dans un cadre
local, celle des déformations de structures complexes au dessus du germe d’un point base (voir par exemple
le célèbre livre de Morrow et Kodaira [76] à ce sujet). En particulier, au milieu du 20ème siècle, Ku-
ranishi [66] prouvait l’existence d’une famille complète et semi-universelle pour toute variété complexe
compacte, dont la base, qui admet une structure d’espace analytique complexe, porte aujourd’hui son
nom. Depuis, l’intérêt porté à cet espace analytique n’a cessé d’augmenter et de nombreux exemples
d’espaces de Kuranishi ont été explicités.

Un contexte qui fournit d’autres exemples de variétés complexes compactes et qui est le sujet d’étude
de cette thèse, est celui des quotients de groupes de Lie et il est donc naturel de s’intéresser aux espaces
de Kuranishi de tels quotients. Par exemple, l’espace de Kuranishi d’un quotient d’un groupe de Lie
complexe G résoluble de dimension 3 par un sous-groupe discret co-compact (dont on connaît la liste
exhaustive) est connu grace aux travaux de Nakamura [81]. Depuis, l’étude de ces solvmanifolds a été
largement développé et on sait aujourd’hui expliciter un large nombre d’espaces de Kuranishi de ces
variétés (voir par exemple [54]). Mentionnons aussi que le cas analogue des nilmanifolds, obtenus comme
quotients de groupes de Lie nilpotents, a lui aussi été traité en 2008 par Rollenske dans [88].

Toujours dans le contexte de variétés holomorphiquement parallélisables (l’équivalence avec le cas des
quotients de groupe de Lie est donnée par le théorème [101] de Wang), on peut aussi énoncer le résultat
[86] de Raghunathan. Dans le cas d’un quotient d’un groupe de Lie complexe G semi-simple et sans
facteur de rang 1 par un sous-groupe Γ discret co-compact, ce théorème affirme que le premier groupe
de cohomologie de Γ à valeur dans le Γ-module g (l’algèbre de Lie de G munie de la représentation
adjointe) est trivial. Ceci a pour conséquence que l’espace de Kuranishi de G{Γ est un point dont on
déduit la rigidité de cette variété, c’est-à-dire toute structure complexe sur G{Γ suffisamment proche de
la structure initiale est isomorphe à celle-ci. Remarquons qu’en particulier pour SLnpCq, avec n ě 3, ce
résultat s’applique.

Il fallut attendre près de 30 ans pour que le cas de SL2pCq soit traité [31] par Étienne Ghys (voir
en particulier le chapitre 5). Cette réponse au cas laissé en suspens par Raghunathan s’appuie prin-
cipalement sur la comparaison des variations de la structure complexe et celles d’une certaine structure
géométrique, au sens de Thurston [97].
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Peu avant les années 1980, Thurston conjectura, de manière analogue au cas de la dimension 2
via le théorème d’uniformisation, que les 3-variétés réelles compactes peuvent toutes être décomposées
en sous-variétés admettant l’une des huit structures géométriques appelées géométries de Thurston
[97]. Cette conjecture fut démontrée par G. Perelman en 2003, travail qui lui vaudra en 2006, la plus
haute distinction Mathématiques : la médaille Fields, qu’il refusera (il refusera 4 ans plus tard, le prix
d’un million de Dollars offert par l’Institut de Mathématiques Clay pour avoir résolu au passage la
conjecture de Poincaré). Le lecteur intéressé pourra consulter [84] pour un aperçu de la preuve. Ces
structures géométriques sont construites selon un principe plus général et qui s’étend au delà du cadre
de la dimension 3. L’idée est de considérer des géométries « modèles »qui sont construites de la façon
suivante. On se donne une variété simplement connexe X sur laquelle un groupe de Lie G agit transi-
tivement et dont les groupes d’isotropie sont compacts. On construit ensuite une pG,Xq-structure sur
une variété M en identifiant localement M à cet espace homogène X et en identifiant les changements
de cartes avec des restrictions d’éléments de G. Signalons que cette construction de pG,Xq-structures
est particulière puisque dans le cas général les hypothèses sur les groupes d’isotropie et sur le caractère
transitif de l’action ne seront pas requis. De façon générale, la théorie des groupes de Lie permet une
compréhension fine de la géométrie de X et apporte ainsi un intérêt évident à ces structures géométriques.

S’appuyant sur les idées d’Ehresmann, Thurston exhibe une relation entre les pG,Xq-structures
d’une variété M et les G-représentations du groupe fondamental de M (via le morphisme d’holonomie
de la pG,Xq-structure). Le principe connu aujourd’hui sous le nom d’Ehresmann-Thurston affirme que
localement, les déformations de l’holonomie correspondent aux déformations de cette pG,Xq-structure.
Plus formellement, l’application qui, à une pG,Xq-structure sur une variété M , associe son holonomie
réalise un homéomorphisme local entre l’espace des pG,Xq-structures et celui des G-représentations de
π1pMq. Depuis, les travaux sur les variétés de représentations ont connu un essor fulgurant autant par
leur nombre que par leur diversité (voir la fin du chapitre 4 pour une courte bibliographie du domaine
ou consulter l’article d’A. Sikora [90, p. 19] pour en voir une très complète, à visée plutôt algébrique).

Dans le cas traité par E. Ghys, puisque SL2pCq peut-être vu comme la complexification de la sphère
de dimension 3, les quotients de la forme SL2pCq{Γ (où Γ est un sous-groupe discret co-compact et sans
torsion) sont munit d’une pG,Xq-structure naturelle, avecX “ SL2pCq et l’action deG “ SL2pCqˆSL2pCq

par translations à gauche et à droite correspond aux parallélismes de Clifford de la sphère S3. L’holo-
nomie de cette pG,Xq-structure des quotients SL2pCq{Γ correspond évidemment à la paire constituée de
la représentation triviale à gauche et de l’inclusion de Γ dans SL2pCq à droite. Il résulte des considéra-
tions rappelées précédemment que les déformations infinitésimales de cette structure correspondent aux
déformations de cette paire de morphismes.

Par ailleurs, la déformation de sous-groupes discrets co-compacts a été largement étudiée et un des
résultats célèbres dans ce contexte est celui de la rigidité de Mostow qui affirme qu’un isomorphisme entre
deux réseaux co-compacts Γ et Λ dans un groupe de Lie simple H non localement isomorphe à SL2pRq

provient d’une conjugaison interne de H. Une conséquence directe de ce résultat affirme que le morphisme
d’inclusion d’un réseau Γ dans SL2pCq est rigide (notons que la rigidité locale était déjà connue par un
théorème de Calabi-Weil) et il s’ensuit que les déformations infinitésimales de la pG,Xq-structure du
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quotient SL2pCq{Γ sont en bijection avec les classes de conjugaison des déformations infinitésimales de la
représentation triviale ρ0 : Γ Ñ Id.

Après avoir montré que les déformations de la pG,Xq-structure de SL2pCq{Γ restent complètes [31,
Lemme 2.1] (c’est à dire que les pG,Xq-structures sont obtenues par quotient de X par l’holonomie)
dans un voisinage de la représentation triviale, le résultat principal [31, Théorème A] de ce même article
provient de la comparaison des déformations de la structure complexe de SL2pCq{Γ avec celles induites
par les structures complexes induites par SL2pCq par passage au quotient. Plus rigoureusement, l’auteur
montre que la famille tautologique au dessus de la SL2pCq-variété de représentation de Γ pointée en ρ0

est la famille de Kuranishi de SL2pCq{Γ.

Dans un contexte un peu différent, les travaux de Kobayashi (par exemple [59] et [60]), Benoist [8]
suivis, entre autre, de ceux de Kassel [50] concernant les actions de réseaux sur des espaces homogènes
réductifs ont permis de donner des critères de propreté de ces actions. En particulier, Guéritaud et
Kassel [42] montre par exemple que cette condition de propreté est ouverte. Ceci a pour corollaire la
généralisation du résultat [31, Lemme 2.1] sur la complétude locale dont on a précédemment esquissé les
intérêts. Signalons aussi les travaux de Nicolas Tholozan [93] qui ont, en particulier, permis de montrer
dans le contexte des pL ˆ L,Lq-structures (où L est un groupe de Lie de rang réel 1), que le domaine
des pL ˆ L,Lq-structures complètes (sur une variété M de même dimension que L) forme une union
de composantes connexes de l’espace de déformation DefpLˆL,LqpMq définit comme espace des classes
d’équivalences de paires d’application développante et d’holonomie par l’action de conjugaison et par
l’action de Diff 0

pMq.

L’ensemble de ces résultats mènent donc naturellement à la question de la généralisation des résultats
de Ghys. Plus particulièrement, soit Γ est un sous-groupe discret co-compact de SL2pCq dont on note ι son
inclusion et soit ρ une SL2pCq-représentation de Γ admissible au sens où pρ, ιq P HompΓ,SL2pCqˆSL2pCqq

est l’holonomie d’une pSL2pCq ˆ SL2pCq,SL2pCqq-structure complète sur une variété, notée Mρ. Voici les
deux questions qui motivent cette thèse et à laquelle elle tente de répondre :

Question 1 (Généralisation du théorème A de [31]). Toute structure complexe sur Mdiff
ρ proche de celle

de Mρ est-elle biholomorphe à celle sur Mη pour une certaine représentation η proche de ρ ?

Question 2 (Espace de Teichmüller de SL2pCq{Γ). Si la réponse à la question précédente est affirmative,
peut-on « globaliser »le résultat précédent et obtenir l’espace de Teichmüller de SL2pCq{Γ ?

Cette thèse répond positivement à la première question sur un ouvert de Zariski (analytique) de
RpΓqa et de façon partielle à la deuxième en donnant un sous-champ ouvert du champ de Teichmüller de
SL2pCq{Γ.

Dès lors, nous pouvons formuler les deux conjectures suivantes :

Conjectures.

‚ La variété des représentations admissibles est complète en tous points.

‚ Le quotient (champêtre) de RpΓqa par l’action de SL2pCq est une union de composantes connexes
dans l’espace de Teichmüller de SL2pCq{Γ.
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2 Contenu du manuscrit

Afin de répondre à ces questions, il est nécessaire de revenir sur l’ensemble des concepts, définitions et
résultats mathématiques évoqués dans l’introduction. Voici, en résumé, le plan abordé dans cette thèse
pour arriver à cet objectif. Nous profiterons de ce plan pour énoncer les contributions de cette thèse.

2.1 Révision de la littérature

Chapitre 1 Le premier chapitre sera consacré à une courte introduction à la théorie classique de Kodaira
et de Spencer concernant les déformations infinitésimales de structures complexes. Nous énon-
cerons le célèbre théorème de Kuranishi. Nous rappellerons la construction de l’application de
Kodaira-Spencer et comment celle-ci permet de contrôler la complétude ainsi que la versalité d’une
déformation donnée dans le cas lisse. Ce chapitre se clôturera sur le point de vue « faisceautique »de
Douady de cette théorie qui permettra, par la suite, d’étudier les obstructions à étendre une dé-
formation à l’ordre 1 aux ordres supérieurs dans le cas qui nous intéresse.

Chapitre 2 Comme mentionné plus haut dans cette introduction, le champ de Teichmüller d’une variété com-
plexe compacte n’admet pas en général de structure d’espace C-analytique, il faut le considérer
comme champ. Nous discuterons alors dans un second chapitre les notions de catégories fibrées en
groupoïdes et de champs. Nous verrons que ce champ (analytique), sous des hypothèses de finitude
de la dimension des groupes d’automorphismes des structures complexes, admet un atlas, ce qui
munit ce champ d’une structure analytique. Le point de vue généraliste qui y est adopté n’a pas
un objectif purement théorique mais bien pratique, puisqu’il nous permettra de travailler aussi bien
avec des champs analytiques qu’avec des champs algébriques et ainsi de faire une comparaison des
champs de caractères sur les sites AnC et Sch.

Chapitre 3 Nous reviendrons dans ce chapitre sur les notions de pG,Xq-structures et morphisme d’holonomie
ainsi que sur l’étroite relation qui lie les déformations de ces objets géométriques via le principe
d’Ehresmann-Thurston. Ce sera aussi l’occasion d’aborder le problème de complétude des pG,Xq-
structures et d’énoncer les récents résultats sur cette question, en particulier dans le contexte des
pL ˆ L,Lq-structures. Nous verrons aussi comment une pG,Xq-structure complète sur M avec X
une variété complexe et G un sous-groupe du groupe des biholomorphisme de X permet de définir
une structure complexe sur M .

Chapitre 4 Ceci nous amènera naturellement, dans un quatrième chapitre, à la notion de représentations du
groupe fondamental dans un groupe de Lie G ainsi qu’à la déformation de ces représentations.
Par ailleurs, la géométrie locale d’une variété de représentations Hompπ1pMq, Gq est naturellement
reliée à l’étude de la cohomologie de ce groupe fondamental à coefficients dans l’algèbre de Lie
g de G dont la représentation adjointe lui confère une structure de π1pMq-module. Par exemple,
il est bien connu que l’espace tangent de Zariski à cette variété de représentation est isomorphe
(via la construction de Weyl) au groupe des 1-cocycles (morphismes croisés) Z1pπ1pMq, gq. Nous
profiterons donc de ce chapitre pour donner les quelques rappels de cohomologie des groupes qui
nous serviront dans les chapitres suivants.

Chapitre 5
Partie 1

Ce chapitre sera consacré à l’étude des déformations des structures complexes des espaces homogènes
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SL2pCq{Γ dans lequel nous reviendrons dans un premier temps sur les résultats de l’article de Ghys
[31]. En particulier, nous énoncerons le théorème qui affirme la versalité de la famille tautologique au
dessus de la variété de représentations pointée en ρ0. Nous énoncerons brièvement la classification
de ces déformations qui nous sera utile pour la suite.

2.2 Contributions

Chapitre 5
Partie 2

Dans la deuxième partie de ce chapitre, nous étudierons plus en détail la géométrie de ces variétés

et leur groupes d’automorphismes. En particulier, un groupe qui jouera un rôle important dans le
chapitre 7 est le groupe d’isotropie d’un point dans l’espace de Teichmüller. De façon générale pour
une variété M , ce groupe, noté Aut1

pMq est le sous-groupe des automorphismes de M qui sont
C8-isotopes à l’identité (notons qu’il existe des exemples de variétés pour lesquelles Aut0

‰ Aut1)
. Nous aurons donc besoin de la connaissance du groupe d’automorphismes de Mρ et en particulier
de sa composante connexe de l’identité

Proposition (théorème 5.4.4). Soit ρ une représentation admissible, alors la composante connexe
de l’identité du groupe des automorphismes de Mρ est isomorphe à la composante connexe de
l’identité du centralisateur CSL2pCqpρpΓqq de ρpΓq dans SL2pCq.

Nous caractériserons ensuite le groupe Aut1
pMρq

Proposition (théorème 5.4.5). Soit ρ une représentation admissible, alors Aut1
pMρq est isomorphe

au centralisateur de CSL2pCqpρpΓqq de ρpΓq dans SL2pCq.

En particulier, pour des représentations dont le centralisateur (de l’image de Γ) n’est pas connexe,
on a Aut1

pMρq ‰ Aut0
pMρq.

Nous profiterons aussi de l’occasion pour montrer que les variétés Mρ sont toujours C8-difféomorphes
à pSL2pCq{Γqdiff :

Proposition (théorème 5.3.11). Pour toute représentation admissible ρ, la variété Mρ est C8

difféomorphe à pSL2pCq{Γqdiff .

Ainsi, lorsque nous nous intéresserons à l’espace de Teichmüller de SL2pCq{Γ, nous pourrons consi-
dérer toutes les composantes de la variété de représentations admissibles.

Chapitre 6 Le sixième chapitre portera sur la généralisation de la complétude de la famille tautologique au
dessus de la variété de représentations. Nous commencerons par donner quelques résultats sur
la cohomologie des variétés construites par Ghys. En particulier, le résultat qui généralise [31,
Théorème 4.1] est le suivant :

Théorème (théorème 6.1.1). Soit ρ une représentation admissible. Notons Fρ le faisceau des
germes de sections localement constantes du fibré plat TMρ et Θρ le faisceau des germes de sections
holomorphes de TMρ alors, il existe un ouvert Zariski (analytique) V de RpΓqa,0 tel que pour tout
ρ P V le plongement de Fρ dans Θρ induit un isomorphisme

H1pMρ,Fρq » H1pMρ,Θρq

8
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Ces groupes nous serviront d’outil de comparaison des déformations de la structure complexe et
des déformations des pSL2pCq ˆ SL2pCq,SL2pCqq-structures de ces variétés et nous montrerons que,
comme dans le cas traité par E. Ghys, cette comparaison mène à la conclusion de la complétude
de la famille tautologique

Théorème (de complétude, théorème 6.0.1). La déformation de la structure complexe d’une variété
Mρ donnée par la famille tautologique au dessus de l’ouvert V de la variété de représentations
correspondant à l’ensemble des représentations admissibles est complète.

En particulier, ce résultat donnera une réponse affirmative à la question 1.
Un corollaire intéressant est que l’on obtient ainsi tous les espaces de Kuranishi de ces variétés (qui
permet des constructions plus ou moins explicites selon les cas) :

Corollaire (théorème 6.4.1). Soit Γ un sous-groupe discret co-compact dans SL2pCq et ρ une re-
présentation admissible. Alors, tout espace C-analytique Z contenant ρ et localement transverse 1 à
la SL2pCq-orbite de ρ, définit (en tant que germe) l’espace de Kuranishi de Mρ.

Enfin, nous terminerons ce chapitre par expliciter l’application de Kodaira-Spencer. En particulier,
nous montrerons que

Proposition (théorème 6.3.1). L’application de Kodaira-Spencer associée à la famille tautologique
au dessus de V Ă RpΓqa,0 pointée en ρ P V est donnée par la composition d’applications :

TZarρ RpΓqa » Z1pΓ, sl2pCqρq
p

ÝÑ H1pΓ, sl2pCqρq » H1pΓ,Hρq » H1pMρ,Θρq

où p : Z1pΓ, sl2pCqρq Ñ H1pΓ, sl2pCqρq est la projection d’un cocycle sur sa classe de cohomologie.

Chapitre 7 Nous verrons ensuite comment les résultats de ces deux chapitres peuvent être « globalisés »et
énoncés dans un cadre champêtre. Il y sera démontré par exemple que le quotient de l’ouvert V Ă

RpΓqa des représentations admissibles dans la variété de représentation par l’action de conjugaison
de SL2pCq, considéré comme champ, est en fait un ouvert du champ de Teichmüller. Nous répondrons
ainsi à la question 2 de manière partielle.

Théorème (théorème 7.1.4). Le champ des caractères admissibles rV { SL2pCqs est un sous-champ
ouvert du champ de Teichmüller de SL2pCq{Γ.

De façon analogue, nous montrerons

Théorème (théorème 7.1.6). Le champ quotient

rV { ppAutpΓq ˆ SL2pCqq{Γqs

est un sous-champ ouvert du champ de modules de Riemann de SL2pCq{Γ.

1. si ρ est un point singulier, on prend une variété transverse rZ à l’orbite dans une désingularisation π : W Ñ RpΓqa de
RpΓqa en ρ et on prend son image par π.

9
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Nous conjecturons aussi dans ce cas que ce sous-champ est un sous-champ fermé du champ de
modules de Riemann de SL2pCq{Γ.
Nous profiterons aussi de ce chapitre pour énoncer les intérêts de cette vision champêtre en oppo-
sition à la théorie classique des invariants géométriques.

Chapitre 8 Nous conclurons cette thèse avec quelques exemples d’applications. Les premiers exemples qui per-
mettent des calculs plus ou moins explicites sont ceux donnés par les variétés obtenues comme
chirurgie de Dehn sur des complémentaires de nœuds dans S3.

La majeure partie des contributions énoncées ici ont permis la rédaction de l’article [48].
Nous l’avons vu, cette thèse s’inscrit à l’intersection de plusieurs domaines des Mathématiques et une

façon de résumer les liens qu’elle partage avec ces domaines est donné dans le schéma suivant :

(G,X)-structuresRe
pr

ése

nta
tions

Structures complexes

Variétés non complètesActions non propres

Holonomie

GLnpCq-structures
Quotients de groupes

de Lie complexes

Cette
thèse

Figure 1 – Diagramme de Venn
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Chapitre 1

THÉORIE CLASSIQUE DE LA

DÉFORMATION

Pour permettre une approche globale de la question des déformations de la structure com-
plexe sur une variété complexe compacte, il est indispensable de revenir dans un premier temps

sur l’approche classique (et historique) de Kodaira, Spencer et Kuranishi dans un cadre local. En
effet, la construction du champ de Teichmüller d’une variété X présuppose la connaissance des espaces
de Kuranishi pour chacune des variétés complexes pXdiff , Jq, où J est une structure presque complexe in-
tégrable. Nous reviendrons en particulier sur une des contributions des travaux de Kodaira et Spencer
concernant l’application qui porte leur nom et qui fournit un critère de complétude et de versalité d’une
famille de déformation sur une base lisse. Cependant, puisque les familles que nous aurons à considérer
plus tard n’ont généralement pas de bases lisses, nous profiterons de ce chapitre pour revoir comment les
ordres supérieurs de déformations permettent de contrôler ces deux critères en plus grande généralité. A
cette occasion, nous adopterons le point de vue « faisceautique »de Douady qui nous sera utile dans la
suite.

La principale référence utilisée pour ce qui suit est le livre Complex manifolds de Morrow et Kodaira
[76]. La dernière section est quant à elle, essentiellement tirée de [24]. Le lecteur pourra aussi trouver une
littérature plus moderne par exemple dans [17].

1.1 Déformations de structures complexes

Nous commençons naturellement ces brefs rappels par les notions de structures presque complexes et
d’intégrabilité de celles-ci ainsi que de leurs déformations infinitésimales.

1.1.1 Structures complexes

Définition 1.1.1. Soit X un espace topologique Hausdorff localement homéomorphe à un ouvert V de
R2n. Une carte locale complexe de X est la donnée d’un ouvert U et d’un homéomorphisme z : U Ñ

V :“ zpUq Ă Cn » R2n. Deux cartes locales pUα, zαq et pUβ , zβq sont dites compatibles si la fonction de

11
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transition
fβ,α :“ zβ ˝ z´1

α : zαpUα X Uβq Ñ zβpUα X Uβq

est holomorphe.
Un atlas holomorphe de X est une collection U :“ tpUα, zαqu de cartes locales toutes deux à deux

compatibles et telles que
Ť

α Uα “ X.
Un atlas holomorphe U “ tpUα, zαqu est dit maximal si toute carte locale complexe pU, zq compatible

avec toutes les cartes pUα, zαq est aussi dans U .

Définition 1.1.2. Une variété complexe X de dimension n est un espace topologique Hausdorff à base
dénombrable d’ouverts muni d’un atlas holomorphe maximal.

Remarques.

‚ Via l’isomorphisme Cn » R2n et en oubliant le critère d’holomorphie, on obtient la variété différen-
tiable sous-jacente que l’on notera Xdiff .

‚ La donnée d’un atlas holomorphe U “ tpUα, zαqu détermine (de façon unique) un atlas holomorphe
maximal Umax :“ tpU, zq | carte locale complexe compatible avec pUα, zαq, @αu.

Les espaces C-analytiques feront partie du lexique courant de cette thèse et il est donc naturel de les
définir ici.

Définition 1.1.3. Un espace annelé est la donnée d’une paire pX,OXq où X est un espace topologique
et OX est un faisceau d’anneaux sur X appelé faisceau structural de X.

Un espace localement annelé est un espace annelé pX,OXq tel que les fibres OX,x soient des anneaux
locaux (c’est-à-dire qu’elles possèdent un unique idéal maximal).

Un morphisme entre espaces localement annelés pX,OXq et pY,OY q est une paire pf, ϕq où f : X Ñ Y

est une application continue et ϕ : OY Ñ f˚pOXq est un morphisme de faisceaux compatible avec les
anneaux locaux (c’est-à-dire que ϕ envoie l’idéal maximal de OY,fpxq sur l’idéal maximal OX,x).

Définition 1.1.4. Un C-espace modèle local est un espace localement annelé pX,OXq où X est le lieu
des zéros commun d’un ensemble fini de fonctions holomorphes fi : U Ă Cn Ñ C, i “ 1, ¨ ¨ ¨ ,m et OX

est la restriction à X du faisceau OU{pf1, ¨ ¨ ¨ , fmq.
Un espace analytique complexe (ou espace C-analytique) est un espace localement annelé pX,OXq tel

que pour tout x P X, il existe un voisinage U de x tel que pU,OU q est isomorphe à un C-espace modèle
local.

Un morphisme d’espaces C-analytiques est un morphisme d’espaces localement annelés.

Remarque. La notion d’espace C-analytique généralise celle de variété complexe. En effet, une variété
complexe peut être définie comme un espace C-analytique qui est en chacun de ses points isomorphe à
un domaine U de Cn et de faisceau structural donné par les fonctions holomorphes sur U .

Nous ne donnerons pas plus de détails sur la théorie de ces espaces. Le lecteur intéressé pourra
consulter [40] ou bien [37].

Définition 1.1.5. Soit X une variété différentiable de dimension paire. Une structure presque complexe
sur X est la donnée d’un endomorphisme J : TX Ñ TX, de classe C8 et vérifiant J2 ” ´ Id.

12
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La structure J est dite intégrable si
”

T 1,0
J X,T 1,0

J X
ı

Ă T 1,0
J X

où T 1,0
J X (resp. T 0,1

J X) est le sous-fibré du fibré tangent complexifié TX bC formé des vecteurs propres
de J associés à la valeur propre i (resp. ´i).

L’intérêt de cette condition d’intégrabilité est pleinement justifiée par :

Théorème 1.1.6 (Newlander-Niremberg [82]). Soit X une variété différentiable compacte et J une
structure presque complexe sur X. Alors, J est intégrable si, et seulement si, il existe un atlas tϕi : Ui Ñ

Cnu de X compatible avec J au sens où

@p P Uj , @v P TpX, dpϕjpJpvqq “ i.dpϕjpvq

Autrement dit, ce théorème affirme que la donnée d’une variété complexe X est équivalente à la
donnée de (la variété différentiable sous-jacente) Xdiff et d’une structure presque complexe intégrable.

Remarquons que la donnée d’une structure presque complexe est équivalente à la donnée du sous-
fibré T 0,1

J X. En particulier, si J 1 est une structure presque complexe proche 1 de J , la projection π0,1 :
TX b C Ñ T 0,1

J X réalise un isomorphisme entre T 0,1
J et T 0,1

J 1 X et on obtient alors une application

T 0,1
J X

pπ0,1
q

´1

ÝÑ T 0,1
J 1 X

π1,0
ÝÑ T 1,0

J

que l’on peut facilement interpréter comme une p0, 1q-forme à valeur dans T 1,0X. De façon réciproque,
une telle forme ξ P A0,1pT 1,0Xq définie un sous-fibré T 0,1

J 1 X de TX b C et par la remarque précédente,
l’opérateur J 1. De plus, la structure complexe J de départ est représentée par 0 P A0,1pT 1,0Xq.

1.1.2 Familles et déformations infinitésimales

Une manière agréable de regarder les variations infinitésimales d’une structure complexe est donnée
par les familles :

Définition 1.1.7. Soit X une variété complexe compacte. Une déformation lisse (ou famille) de X est
la donnée d’un morphisme lisse et propre π : X Ñ B entre variétés complexes (ou plus généralement
entre espaces C-analytiques) connexes X et B et d’un point b P B tel que la fibre Xb au dessus de b soit
biholomorphe à X. La donnée d’un tel biholomorphisme i : π´1pbq Ñ X est appelé marquage.

La notion de marquage intervient principalement dans le rôle du groupe d’automorphisme de la fibre
centrale. Ici, nous considérerons toujours des déformations marquées.

Pour justifier la pertinence de cette définition, rappelons le résultat suivant :

Théorème 1.1.8 (Lemme d’Ehresmann [28]). Soient M et N deux variétés différentielles. Une sub-
mersion surjective propre et lisse f : M Ñ N est une fibration localement triviale.

1. proche au sens de la topologie de la convergence C8 : une suite d’opérateurs tJnu tend vers zéro si elle converge vers
zéro pour toute norme Ck k ě 0 sur tout compact.
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En particulier, ce résultat affirme qu’une déformation (lisse) π : X Ñ B d’une variété complexe X
est localement triviale (au sens différentiable). Autrement dit, pour un voisinage U du point base b P B

de la déformation, pour tout t dans U , les fibres π´1ptq sont C8-difféomorphes à la fibre centrale, c’est
à dire à Xdiff . Il n’existe cependant pas d’analogue complexe et on peut alors, dans certain cas, obtenir
de nouvelles structures complexes sur Xdiff sans modifier la structure différentiable.

Dans tout le chapitre 2, nous nous appuierons sur un exemple afin d’illustrer la nécessité des notions
qui y seront abordées. Il est donc naturel de la faire intervenir ici déjà.

Exemple des tores 1.A. Rappelons qu’une courbe elliptique est définie comme le quotient de C par un
réseau Γ engendré par deux vecteurs (à coefficients complexes) et R-linéairement indépendants ω1, ω2. Il
est clair que C˚ agit sur C par multiplication et que l’on peut toujours se ramener au cas où ω1 “ 1 et
ω2 “ τ P H “ tz P C | ℑpzq ą 0u. On considère alors l’action de Γ sur C engendrée par

z ÞÑ z ` 1 et z ÞÑ z ` τ

et on note Tτ le quotient de C par cette action. Cette construction donne, de manière assez évidente,
une façon de trouver une famille au dessus de H, il suffit de prendre le quotient de H ˆ C par l’action
engendrée par

pτ, zq ÞÑ pτ, z ` 1q et z ÞÑ pτ, z ` τq

On note G le groupe engendré par ces transformations.
Considérons l’application de projection p1 : pHˆCq{G Ñ H. Il est clair que p´1

1 pτq “ Tτ et on obtient
ainsi une famille de Tτ . Le lemme d’Ehresmann affirme que cette fibration est localement triviale. Puisque
H est contractile, elle l’est donc globalement et on obtient

pH ˆ Cq{G » H ˆ S1 ˆ S1
looomooon

“pTτ qdiff

Il est important de noter ici que ce quotient pH ˆ Cq{G est un produit pour la structure différentiable
mais que les fibres Tτ ne sont pas localement biholomorphes.

1.2 Versalité et théorème de Kuranishi

On voudrait maintenant pouvoir comparer les déformations entre elles et trouver une déformation qui
permette d’obtenir toutes les structures complexes suffisamment proches de la structure complexe initiale
et qui soit minimale parmi les déformations ayant cette propriété. Commençons par donner la notion de
morphismes entre déformations.

Proposition 1.2.1. Soit π : X Ñ B une déformation marquée pointée en b d’une variété complexe
compactes et f : B1 Ñ B un morphisme d’espaces C-analytiques avec fpb1q “ b. Le produit fibré X ˆf,B,πB

1

admet une structure de déformation marquée de X sur B1 pointée en b1 appelée déformation pullback de
π : X Ñ B par f que l’on notera f˚X .

Cette proposition est essentiellement due à la stabilité des propriétés lisses et propres par changement
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de bases.

Définition 1.2.2. Deux déformations marquées π1 : X1 Ñ B et π2 : X2 Ñ B pointées en b sur une
même base sont dites isomorphes si il existe un biholomorphisme f : X1 Ñ X2 tel que π2 ˝ f “ π1 et tel
que f préserve les marquages, c’est-à-dire f ˝ i1 “ i2 où i1 et i1 sont respectivement les marquages des
familles π1 : X1 Ñ B et π2 : X2 Ñ B.

Définition 1.2.3. Deux déformations marquées π1 : X1 Ñ B1 et π1
2 : X2 Ñ B2 pointées respectivement

en b1 et b2 sont dites biholomorphes si il existe un biholomorphisme f : B1 Ñ B2 tel que f préserve les
points bases (c’est-à-dire fpb1q “ b2) et tel que f˚X2 soit isomorphe à X1.

1.2.1 Complétude et versalité

Une question naturelle, à laquelle Kuranishi, Kodaira et Spencer ont répondu, est de savoir s’il
existe une déformation universelle.

Définition 1.2.4. Soient X une variété complexe compacte et π : X Ñ B une déformation marquée de
X pointée en b. La déformation est dite

‚ complète si toute autre déformation p : M Ñ S marquée, pointée en s, est localement isomorphe
en s, au pullback de X par une application holomorphe f : S Ñ B qui respecte les points bases,

‚ verselle (resp. universelle) si, en plus d’être complète, la différentielle de f au point base est unique
(resp. f est unique),

Remarque. On peut réécrire la définition de complétude de la façon suivante. La déformation π : X Ñ B

est complète si pour toute déformation p : M Ñ S pointée en s, il existe des voisinages U Ă B et V Ă S

des points bases et une application holomorphe f : V Ñ U qui préserve les points bases et telle que l’on
ait le diagramme commutatif suivant :

M|p´1pV q f˚pX |π´1pUqq X |π´1pUq

V U

p

»

π

f

1.2.2 Théorème de Kuranishi

Soit X une variété complexe compacte et notons J sa structure complexe. Nous l’avons vu, l’ensemble
des structures complexes proches de J s’identifie à un ouvert de 0 dans l’ensemble A0,1pT 1,0Xq. Prenons
une métrique hermitienne h sur X et définissons l’opérateur B sur l’espace A0,ppT 1,0Xq des p0, pq-formes
à valeurs dans T 1,0X. Pour ϕ P A0,ppT 1,0Xq et ψ P A0,p´1pT 1,0Xq, la condition

hpϕ, Bψq “ hpB
˚
ϕ, ψq

définit un opérateur adjoint à B et ainsi un opérateur Laplacien

l :“ BB
˚

` B
˚

B
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Cet opérateur est un opérateur elliptique du second ordre et la théorie de Hodge permet une décompo-
sition :

A0,qpT 1,0Xq “ H0,qpT 1,0Xq ‘ lA0,qpT 1,0Xq

où H0,qpT 1,0Xq est l’espace des p0, qq-formes harmoniques à valeurs dans T 1,0X.
On définit ensuite l’opérateur de Green G comme l’unique opérateur vérifiant

ψ “ Hψ ` lGψ, ψ P A0,qpT 1,0Xq

où H est la projection sur la partie harmonique.
Soit η1, ¨ ¨ ¨ , ηm une base de l’espace H0,1pT 1,0Xq (qui est de dimension finie par compacité de X) des

p0, 1q-formes harmoniques. Soit ϕ : Cm Ñ A0,1pT 1,0Xq l’unique série qui satisfait

ϕptq “
ÿ

i

ηiti `
1
2B

˚
Grϕptq, ϕptqs

avec t “ pt1, ¨ ¨ ¨ , tmq et r, s est le crochet de Lie sur les champs de vecteurs. Kuranishi montre que cette
série converge sur un voisinage de 0. De plus, ϕptq définit une structure presque complexe intégrable sur
X si, et seulement si, Hrϕptq, ϕptqs “ 0 où H est la projection sur l’espace des p0, 2q-formes harmoniques.

On pose ensuite K “
␣

t P Cm » H0,1pT 1,0Xq|Hrϕptq, ϕptqs “ 0
(

. Et le germe, en 0, de cet espace
C-analytique paramètre les structures complexes sur X.

Finalement l’isomorphisme de Dolbeault H0,1pT 1,0Xq » H1pX,Θq permet ensuite de réécrire le
théorème de Kuranishi :

Théorème 1.2.5 (Kuranishi, [65]). Soit X une variété complexe compacte. Il existe une déformation
(marquée) π : K Ñ K de X qui est complète et verselle en 0. De plus, l’espace tangent de K à son point
base est isomorphe à H1pX,Θq, où Θ est le faisceau des germes de champs de vecteurs holomorphes sur
X.

L’espace C-analytique K est appelé l’espace de Kuranishi de X. Voir aussi la note d’Adrien Douady
[25] sur le théorème de Kuranishi.

Remarques. De plus, les critères de complétude et de versalité de la famille de Kuranishi ont quelques
corollaires [65] qu’il faut mentionner.

1. La versalité de la famille de Kuranishi implique l’unicité du germe analytique de K en 0,

2. la famille de Kuranishi n’est pas seulement complète en 0 mais en chacun de ses points (quitte à
restreindre si besoin).

Exemple des tores 1.B. Dans l’exemple des tores 1.A, la famille construite est complète et verselle en
tous points τ P H.

Remarque. On connaît des exemples de variétés complexes compactes qui n’admettent pas de déformation
universelle (voir par exemple le cas des surfaces de Hirzebruch dans [16] ou le cas des surfaces de
Hopf dans [62]). Il existe cependant des critères qui assure l’existence d’une telle déformation, le fait
qu’une variété complexe compacte n’admette pas de champs de vecteurs holomorphes globaux en est un
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exemple. Si l’on autorise seulement des déformations sur des bases réduites, on a même l’équivalence entre
l’universalité de l’espace de Kuranishi et le fait que la fonction h0ptq “ dimH0pXt,Θtq soit constante où
Xt “ π´1ptq et Θt est le faisceau des germes de champs de vecteurs holomorphes sur Xt. Voir [102] et
[103] pour la démonstration et [72] pour une discussion détaillée.

1.3 Application de Kodaira-Spencer

Étant donné une déformation π : X Ñ B, une question naturelle est de savoir si celle-ci est complète
et si elle est verselle. Ce sont Kodaira et Spencer qui répondront à cette question en donnant un critère
de complétude et de versalité fournit par l’application de Kodaira-Spencer.

1.3.1 En coordonnées locales

Soit X une variété complexe compacte et π : X Ñ B une déformation lisse de X pointée en b dont
on note les fibres Xt :“ π´1ptq. On suppose, pour alléger, que B “ C et b “ 0.

Soit ε ą 0 et Bε :“ tt P C| |t| ă εu un ε-voisinage de 0. Comme π est lisse, on peut trouver tUi| i P Iu

un recouvrement de π´1pBεq avec un système de coordonnées pzi1, ¨ ¨ ¨ , zin, tq sur Ui tel que πpzi, tq “ t.
Où zi :“ pzi1, ¨ ¨ ¨ , zinq.

Comme on a supposé la déformation lisse, X est une variété complexe et les coordonnées locales
définies sur les Ui sont reliées par des fonctions de transitions holomorphes

ziα “ f ijα pzj , tqq, sur Ui X Uj

On veut maintenant écrire les changements de cartes holomorphes sur Xt. On pose U ti :“ Xt X Ui et

θijptq :“
n
ÿ

α“1

Bf ijpzj , tq

Bt

B

Bziα
P ΓpU ti X U tj ,ΘXt

q

où ΘXt
est le faisceau des germes de champs de vecteurs holomorphes sur Xt.

Et puisque
ziα “ f ijα pzj , tq “ f ijα

´

f jk1 pzk, tq, ¨ ¨ ¨ , f jkn pzk, tq
¯

sur Ui X Uj X Uk

en différentiant, on obtient que θijptq est un cocycle de Čech de Xt à valeur dans ΘXt
.

Définition 1.3.1. On appelle application de Kodaira-Spencer l’application

KS : H0pXb, TbBq Ñ H1pXb,ΘXb
q,

B

Bt
Ñ

␣

θijptq|t“0
(

Plusieurs choix ont été fait dans la définition mais le lecteur pourra vérifier que
␣

θijptq|t“0
(

ne dépend
pas du choix de la carte locale (voir par exemple [76, Proposition 3.1]).
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1.3.2 Suite fondamentale

Un fait qui nous sera utile par la suite est que l’application de Kodaira-Spencer est calculable via l’ap-
plication connectante de la suite exacte longue associée à la suite exacte fondamentale d’une déformation.
Il est donc important de revoir cette construction ici.

Soit X une variété complexe compacte et π : X Ñ B une déformation de X pointée en b. L’application
dπ : T M|Xb

Ñ TbB induit la suite exacte de OXb
-modules suivante

0 Ñ ΘXb
Ñ Ψ|Xb

dπ
ÝÑ TbB b OXb

Ñ 0

où

‚ ΘXb
est le faisceau des germes de champs de vecteurs holomorphes sur Xb,

‚ Ψ|Xb
est le faisceau des germes de champs de vecteurs holomorphes sur X |Xb

,

‚ TbB b OXb
est identifié au faisceau définit par pTbB b OXb

qpUq “ TbB bC OXb
pUq.

On peut donc construire la suite exacte longue associée en cohomologie :

0 Ñ H0pXb,ΘXb
q Ñ H0pXb, Ψ|Xb

q Ñ H0pXb, TbB b OXb
q Ñ H1pXb,ΘXb

q Ñ ¨ ¨ ¨

Et comme on a supposé X – Xb compacte, le principe du maximum affirme que OXb
pXbq “ C et

l’application connectante de la suite exacte longue devient

δ˚ : H0pXb, TbBq » TbB Ñ H1pXb,ΘXb
q

Proposition 1.3.2 (Kodaira-Spencer, [76]). L’application connectante δ˚ est l’application de Kodaira-
Spencer.

1.3.3 Critère de complétude et de versalité

L’intérêt majeur de l’application de Kodaira-Spencer est qu’elle fournit un critère de complétude et
de versalité :

Théorème 1.3.3 (Kodaira-Spencer, [61]). Soit X une variété complexe compacte et π : X Ñ B une
déformation marquée en b P B, avec B une variété lisse. La surjectivité et la bijectivité de l’application
de Kodaira-Spencer associée à cette déformation impliquent respectivement la complétude et la versalité
de la déformation.

Remarquons que, sous l’hypothèse d’une base lisse, ce théorème affirme qu’une déformation est com-
plètement contrôlée par les déformations à l’ordre 1. Malheureusement, cette hypothèse est trop restrictive
pour être appliquée de façon générale dans le cas qui nous intéressera dans cette thèse. Pour obtenir un
critère de complétude et de versalité d’une déformation sur une base singulière, il est nécessaire de regarder
les déformations à des ordres supérieurs. Pour ce faire, nous opterons pour le point de vue faisceautique
de Douady qui aura l’avantage de s’adapter facilement à notre cas d’étude.
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1.4 Obstructions - Le point de vue d’Adrien Douady

Avant d’énoncer le prochain résultat, rappelons la définition du cup-produit. Si F1 et F2 sont deux
faisceaux sur X, alors on définit l’application de cup-produit sur un recouvrement U de X :

!: CppX,U ,F1q b CqpX,U ,F2q Ñ Cp`qpX,U ,F1 b F2q

par
pα ! βqi1,¨¨¨ ,ip`q

:“ αi1,¨¨¨ ,ip b βip,¨¨¨ ,ip`q

et on obtient une application sur les groupes de cohomologie correspondants par passage à la limite
inductive sur les recouvrements de X.

Si de plus on a un troisième faisceau F3 et un morphisme F entre F1 bF2 et F3 alors on peut composer
le cup-produit et F pour obtenir une application

F˝ !: HppX,F1q bHqpX,F2q Ñ Hp`qpX,F3q

En particulier, pour Θ le faisceau des germes de champs de vecteurs holomorphes sur X et r , s : ΘbΘ Ñ

Θ, on obtient l’application de cup-crochet, naturellement notée r!s.
Considérons une variété complexe compacte X. Une question essentielle est de savoir si, étant donné

un élément a P H1pX,Θq, il existe une déformation π : X Ñ B de X telle que a soit l’image d’un vecteur
v P TbB par l’application de Kodaira-Spencer. Nous verrons, dans cette section, qu’il existe une série
d’obstructions qui permettent d’affirmer en cas d’annulation, ce cas de figure.

Soit π : X Ñ B une déformation de X donnée par une famille où B est, pour simplifier, un voisinage
ouvert de 0 de C (le cas d’un espace C-analytique est décrit dans [24, p.4-10]). Pour tout U ouvert de X,
considérons les biholomorphismes f : W Ñ W 1, où W et W 1 sont des voisinages ouverts de U ˆ t0u dans
XˆB, tels que ces biholomorphismes préservent les fibres (c’est à dire π ˝fpwq “ πpwq) et f |X0 ” Id, où
X0 :“ π´1p0q. Considérons alors ΞpUq le quotient de l’ensemble de tels biholomorphismes f : W Ñ W 1

sous la relation d’équivalence „ qui identifie deux tels biholomorphismes

f1 : W1 Ñ W 1
1, f2 : W2 Ñ W 1

2

dès lors qu’il existe un ouvert V Ă W1 XW2 contenant tous deux Uˆt0u tel que f1|V “ f2|V . Les groupes
(pour la composition) ΛpUq :“ ΞpUq{ „ forment un faisceau sur X que nous noterons naturellement Λ.
Il est important de remarquer que Λ est un faisceau en groupes non-abéliens. L’intérêt de ce faisceau est
décrit par Douady :
le groupe H1pX,Λq s’identifie à l’ensemble des germes de déformations de X au dessus de B Ă C.

Soit U un ouvert de X. Le groupe non abélien ΛpUq est filtré : soit ΛkpUq le groupe des biholomor-
phismes dans ΛpUq qui sont tangents à l’identité jusqu’à l’ordre k ´ 1. On a alors la filtration

ΛpUq “ ΛpUq1 Ą Λ2pUq Ą ¨ ¨ ¨

On obtient alors une filtration du faisceau Λ.
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Il est montré dans [76] que les quotients successifs Λk{Λk`1 sont isomorphes à Θ le faisceau des germes
de champs de vecteurs holomorphes sur X, pour tout k ě 1. Considérons la suite exacte suivante

0 Ñ Λk{Λk`1 » Θ Ñ Λ{Λk Ñ Λ{Λk´1 Ñ 0

et notons pour simplifier Qk :“ Λ{Λk`1. Avec ces suites exactes, nous pouvons considérer la suite suivante
extraite de la suite exacte longue associée en cohomologie

H1pX,Θq Ñ H1pX,Qk`1q Ñ H1pX,Qkq
δk
Ñ H2pX,Θq

Soit ak P H1pX,Qkq une déformation à l’ordre k. On appelle obstruction d’ordre k` 1 de a l’élément
δka P H2pX,Θq. Si cette obstruction est représentée par la classe nulle, par exactitude, l’élément a est
obtenu par l’image d’un élément ak`1 par l’application H1pX,Qk`1q Ñ H1pX,Qkq.

Proposition 1.4.1. Pour un élément a P H1pX,Q1q » H1pX,Θq l’obstruction à l’ordre 2 est donnée
par la classe de ra ! as P H2pX,Θq.

Remarque. Pour des exemples de familles verselles données par le cône quadratique définit par l’annulation
du cup-crochet, le lecteur pourra consulter [35].

Remarque. Nous pouvons continuer les calculs pour trouver les obstructions supérieures et on obtient
que l’obstruction à étendre une déformation à l’ordre 2 est donnée par le triple produit de Massey (voir
[24]).

Notons que l’approche de Douady permet de construire des déformations formelles. La convergence
de telles déformations formelles est assurée par un théorème d’Artin [4]. Puisque ce résultat sera utilisé
par la suite, nous profitons de la fin de ce chapitre pour le rappeler.

Théorème 1.4.2 (Artin, [4, Theorem 1.2]). Soient m, n et N des entiers non nuls. Posons x :“
px1, ¨ ¨ ¨ , xnq P Cn, y :“ py1, ¨ ¨ ¨ , ymq P Cm et

fpx,yq :“ pf1px,yq, ¨ ¨ ¨ , fN px,yqq “ 0 (1.1)

un système d’équations analytiques (pour tout i “ 1, ¨ ¨ ¨ , N , fi est une série convergente en x et y).
Supposons que ŷpxq “ pŷ1pxq, ¨ ¨ ¨ , ŷmpxqq P Crrxss soit une solution formelle de (1.1), c’est-à-dire

fpx, ŷpxqq “ 0 et tel que les ŷipxq soient des séries formelles sans termes constants. Alors, pour tout
entier c, il existe des séries convergentes py1pxq, ¨ ¨ ¨ , ympxqq “: ypxq telles que

ypxq ” ŷpxq, pmod mcq

où m est l’idéal maximal de Crrxss.

Dans notre contexte, à partir de la déformation formelle construite par Douady (sous les hypothèses
d’annulation des obstructions supérieures), le théorème d’Artin précédent permet d’affirmer l’existence
d’une déformation convergente. En particulier, la caractérisation des obstructions (comme classes dans
H2pX,Θq) donne le théorème suivant, initialement prouvé par Kodaira, Niremberg et Spencer.
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Théorème 1.4.3 ([76, Theorem 2.1]). Si H2pX,Θq “ 0 alors il existe une famille X Ñ ∆ε complète et
verselle, où ∆ε est une boule ouverte de Cn de rayon ε ą 0 et n “ dimH1pX,Θq.
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Chapitre 2

CHAMPS ANALYTIQUES ET GROUPOÏDES

Le langage des champs nous sera par la suite indispensable pour permettre l’étude globale des
déformations de structures complexes des variétés SL2pCq{Γ. Ce chapitre reprend donc les définitions

et propriétés élémentaires de ces outils.
Si dans le précédent chapitre nous nous sommes intéressés aux déformations infinitésimales de struc-

tures complexes sur une variété complexe compacte X, la question qui apparaît naturellement est de savoir
si l’on peut trouver un espace admettant une structure analytique (par exemple une structure de variété,
d’espace C-analytique, etc.) paramétrant les différentes classes d’équivalence de structures complexes sur
Xdiff , sous l’action du groupe Diff 0

pMq (resp. sous l’action du groupe Diff `
pMq des difféomorphismes

préservant l’orientation), c’est-à-dire l’espace de Teichmüller (resp. espace de modules de Riemann). En
général pour une variété quelconque, cet espace n’admet pas de structure de variété complexe ni même de
structure d’espace C-analytique. Nous verrons brièvement dans ce chapitre que l’obstruction à l’existence
d’un tel espace est largement reliée à l’existence de groupes d’automorphismes non triviaux des struc-
tures complexes de X. Les champs analytiques, qui généralisent la notion d’espace C-analytique et celle
d’orbifold, permettent (sous certaines hypothèses) de munir cet espace de Teichmüller d’une structure
analytique.

Dans les premières sections de ce chapitre, nous n’allons pas spécifier le site sur lequel nous travaillons
pour pouvoir appliquer ensuite les définitions dans les cadres analytiques et algébriques. L’intérêt de cette
différentiation tardive nous permettra de travailler sur l’espace de Teichmüller, admettant une structure
de champ analytique et parallèlement de considérer les champs quotients admettant une structure algé-
brique pour profiter de la vaste bibliographie issue de ce contexte. Notons aussi qu’introduire les champs
algébriques nous permettra, plus tard, de pouvoir comparer le quotient GIT et le quotient champêtre de
la variété des représentations (voir la section 7.2).

2.1 Définitions et motivation

Malgré la difficulté techique évoquée, nous nous efforcerons de rendre la lecture de ce chapitre plus
agréable en agrémentant le texte d’un exemple simple sur lequel nous appliquerons quelques définitions
et propriétés. Cet exemple sert en même temps de motivation à l’introduction de ce langage champêtre,
sans lequel il n’admet pas de structure analytique.
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Soit X une variété différentiable compacte de dimension paire, supposée connexe et orientable. On
note IpXq l’ensemble des structures presque complexes intégrables sur la variété X. Le groupe Diff pXq

des C8-difféomorphismes de X agit sur IpXq via

Diff pMq ˆ IpXq Ñ IpXq, pf, Jq Ñ pdfq´1 ˝ J ˝ df

On note Diff 0
pXq (resp. Diff `

pXq) le groupe des difféomorphismes de X isotopes à l’identité (resp.
préservant l’orientation de X).

Définition 2.1.1. On a évidemment Diff 0
pXq Ă Diff `

pXq et on appelle groupe des difféotopies de X
(souvent appelé mapping class group) de X le quotient Diff `

pXq{Diff 0
pXq et on le notera MCpXq.

Évidemment

Définition 2.1.2. L’espace de Teichmüller de X, noté T pXq, est définit comme le quotient de IpXq par
l’action du sous-groupe Diff 0

pXq.
L’espace de modules de Riemann de X, noté MpXq, est définit comme le quotient de IpXq par l’action

du sous-groupe Diff `
pXq.

Remarquons que l’on a la relation MpXq “ T pXq{MCpXq.
La question principale évoquée est donc de munir ces espaces topologiques d’une structure analytique.

Exemple des tores 2.C. Dans le chapitre précédent nous avons décrit dans l’exemple des tores 1.A
les déformations du tore de dimension 1. Il est bien connu que l’espace de Teichmüller du tore coïncide
exactement avec H et que la famille universelle est bien celle décrite dans cet exemple. Notons que l’espace
de Teichmüller admet trivialement une structure de variété.

De plus, le groupe PSL2pZq agit sur H via

PSL2pZq ˆ H Ñ H,

˜

A “

˜

a b

c d

¸

, τ

¸

ÞÑ A.τ “
aτ ` b

cτ ` d

en préservant les structures complexes, c’est-à-dire que Tτ est biholomorphe à TA.τ . De plus que PSL2pZq

correspond au groupe des difféotopies du tore MCpTq. On obtient de cette façon, l’espace de modules de
Riemann MpTq “ H{ PSL2pZq. Cet espace admet une structure d’orbifold et on a dans ce cas, répondu
à la question en trouvant une structure analytique sur l’espace de modules de Riemann de T. Pour une
représentation de cet espace, on peut regarder l’action de PSL2pZq sur H engendrée par les transformations

τ ÞÑ ´
1
τ
, τ ÞÑ τ ` 1

On obtient alors le domaine fondamental décrit par la figure 2.1.

Nous traitons maintenant le cas analogue des tores en dimension supérieure pour motiver l’intervention
des champs.

Exemple des tores 2.D. De façon analogue à la dimension 1, on définit le tore Tn de dimension n

comme le quotient de Cn par un réseau 2n-dimensionnel Γ. Un tel réseau est la donnée de 2n vecteurs
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H´1 10

ˆ
τ

ˆ
τ ` 1

τ ÞÑ ´ 1
τ

Figure 2.1 – Domaine fondamental dans H sous l’action de PSL2pZq.

tω1, ¨ ¨ ¨ , ω2nu (à coefficients complexes) R-linéairement indépendants. Les changements de coordonnées
de Cn induisent une action du groupe GLnpCq sur ces réseaux et on peut montrer de façon analogue à la
dimension 1 que l’on peut toujours se ramener au cas

ω1 “ e1, ¨ ¨ ¨ , ωn “ en

où teiu est la base canonique de Cn. Avec un peu de raisonnement sur les matrices (voir par exemple [61,
§5.2] ou [76, p. 22-23]), on peut montrer que l’espace de Teichmüller est donné de façon analogue au cas
de la dimension 1 par :

Hn :“ tZ P MnpCq| detpℑZq ą 0u

Et que la famille universelle est obtenue comme quotient de Hn ˆ Cn par l’action engendrée par

pZ, zq ÞÑ pZ, z ` eiq et pZ, zq ÞÑ pZ, z ` Ziq

où Zi est la i-ème ligne de Z. On note Gn le groupe engendré par ces transformations.
Remarquons que si l’on change les 2n vecteurs tω1, ¨ ¨ ¨ , ω2nu qui engendrent notre réseau par une

autre base de Γ, on obtient deux tores biholomorphes. Autrement dit, on a une action de SL2npZq sur
GL2npRq. Cette action sur Hn se réécrit de la façon suivante. Si A P SL2npZq,

A “

˜

P Q

R S

¸

et Z P Hn alors
A.Z “ pPZ `QqpRZ ` Sq´1

Pour trouver l’espace de modules de Riemann, il faut donc faire le quotient de Hn par SL2npZq via
cette action. Malheureusement, cette action est très loin de donner un quotient agréable. En fait, en
dehors d’un ensemble de mesure nulle, pour tous points T P Hn, les SL2npZq-orbites sont denses dans Hn

(le lecteur intéressé pourra consulter [99, Theorem 3.11]).
Autrement dit, l’espace de modules de Riemann MpTnq n’est séparé en presque aucun de ses points

et n’admet donc pas de structure d’espace C-analytique, ni même de structure orbifold. C’est ici que le
langage champêtre intervient.
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Remarque. Dans le cas des tores algébriques et plus généralement dans le cas des variétés abéliennes, la
donnée d’une polarisation (ou polarisation principale) (c’est-à-dire la donnée d’un fibré ample sur une telle
varété et donc d’un plongement dans un espace projectif) permet d’éviter les problèmes liés aux sauts de
dimension des groupes d’automorphismes de ces variétés (voir fin de ce chapitre pour une explication du
problème dans ce cas) et on peut alors dans ce cas construire l’espace de modules des variétés abéliennes
polarisées sans faire appel au langage des champs. Le lecteur intéressé pourra consulter [11] pour plus de
détails.

2.2 Introduction aux catégories fibrées en groupoïdes et aux
champs

Les difficultés techniques des notions évoquées ici ont conduit l’écriture de ce chapitre à ne contenir
(presque) aucune preuve. Le lecteur intéressé pourra consulter [92] ou [6] pour les détails/preuves de cette
section.

2.2.1 Topologie de Grothendieck

On rappelle, pour des questions de notations, qu’une catégorie C est la donnée d’une classe d’objet
obpCq, d’une classe de morphismes HomC (telle que pour tout objet X P obpCq il existe l’identité IdX P

HomCpX,Xq), de deux applications dom et codom (qui donnent le domaine et codomaine d’un morphisme,
c’est-à-dire f P HomCpdompfq, codompfqq avec dompfq et codompfq dans obpCq) et d’une application de
composition des morphismes associative notée ˝.

Nous noterons généralement X P obpCq et f P HomC partout où cela sera nécessaire, la notation
abusive X P C ou f P C sera utilisée lorsqu’il n’y aura pas d’ambiguïté. Nous pourrons aussi parfois écrire
« soit X un objet de C ».

Définition 2.2.1. Soit C une catégorie. Une topologie de Grothendieck sur C est la donnée pour chaque
objet U P obpCq d’une collection d’ensemble de flèches tfi : Ui Ñ U | i P Iu dans HomC appelée recouvre-
ment de U telles que

‚ si f : V Ñ U est un isomorphisme, l’ensemble tfu est un recouvrement,

‚ si tfi : Ui Ñ U | i P Iu est un recouvrement et g : V Ñ U une flèche quelconque alors, pour tout
i P I, les produits fibrés Ui ˆU V existent et tpi : Ui ˆU V Ñ V | i P Iu est un recouvrement.

‚ si tfi : Ui Ñ U | i P Iu est un recouvrement de U et si pour tout i P I on a un recouvrement
tgi,j : Vi,j Ñ Ui| j P Jiu de chaque Ui alors, tfi ˝ gi,j : Vi,j Ñ U | i P I, j P Jiu est un recouvrement.

Remarque. La définition de topologie de Grothendieck donnée ici est plutôt la définition de pré-topologie
de Grothendieck. Puisque une pré-topologie induit une topologie de Grothendieck nous éviterons les
définitions superflues.

Définition 2.2.2. Un site est une catégorie C munie d’une topologie de Grothendieck.

Exemples 2.2.3.
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‚ La catégorie Top des espaces topologiques munie des familles d’immersions ouvertes (c’est-à-dire
d’applications qui sont des homéomorphismes sur leurs images) Ui Ñ U avec

Ť

Ui Ñ U surjective
pour chaque objet U P obpTopq est un site.

‚ On verra aussi le site Diff des variétés différentiables et des applications lisses entre elles.

‚ Ou encore Sch la catégorie des schémas avec la topologie étale.

‚ L’exemple central de cette thèse est celui du site analytique AnC dont les objets sont les espaces C-
analytiques et les morphismes sont les morphismes d’espaces C-analytiques (voir la théorème 1.1.4).
Les familles de recouvrement sont les recouvrements pour la topologie standard (pas celle de Zariski).

2.2.2 Groupoïdes et catégories fibrées en groupoïdes

Définition 2.2.4. Un groupoïde est une petite catégorie (c’est-à-dire une catégories dont les classes
d’objets et de morphismes sont des ensembles) dans laquelle tout morphisme est inversible.

Lemme 2.2.5. De façon équivalente, un groupoïde G est la donnée de deux ensembles G1 (ensemble des
flèches) et G0 (ensemble des objets) munit de cinq applications de structure ps, t,m, u, iq :

‚ les applications source et cible
s, t : G1 Ñ G0

qui associe à chaque flèche f P G1 un objet source spfq P G0 et un objet cible tpfq P G0. On note
plus simplement x f

Ñ y avec x “ spfq et y “ tpfq,

‚ l’application de composition
m : G1 ˆs,G0,t G1 Ñ G1

définie sur le produit fibré G1 ˆt,G0,s G1 “ tpf, gq P G1 ˆ G1| tpfq “ spgqu (noté G1 ˆG0 G1 s’il
n’y a pas d’ambiguïté) qui associe au couple pf, gq P G2 la composition mpf, gq “ f ˝ g P G1, notée
parfois multiplicativement fg,

‚ l’application identité
u : G0 Ñ G1

qui à tout objet x P G0 associe l’application identité sur x, x 1x
Ñ x P G1,

‚ l’application inverse
i : G1 Ñ G1

qui à chaque flèche f P G1 associe la flèche inverse tpfq
f´1

Ñ spfq.

Ces applications doivent vérifier la commutativité des diagrammes :

‚ d’identité

G0 G1

G0

u

IdG0
s

G0 G1

G0

u

IdG0
t

‚ de composition
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G1 ˆG0 G1 G1

G1 G0

m

p1 s

s

G1 ˆG0 G1 G1

G1 G0

m

p2 t

t

‚ d’associativité de la composition

G1 ˆG0 G1 ˆG0 G1 G1 ˆG0 G1

G1 ˆG0 G1 G1

IdG1 ˆm

mˆIdG1 m

m

‚ de composition par l’identité

G1 G1 ˆG0 G1

G1

pu˝s , IdG1 q

IdG1
m

G1 G1 ˆG0 G1

G1

pIdG1 , u˝tq

IdG1
m

Un tel groupoïde sera noté

G1 ˆs,t G1 G1 G0 G1 G1
m

s

t u i

ou encore plus simplement G1
s

Ñ
t
G0 lorsqu’il n’y a pas d’ambiguïtés sur les applications m,u et i.

Exemple 2.2.6. Il est intéressant dans une première lecture de penser à un groupoïde comme à une
généralisation de la notion de groupe de la façon suivante.

Soit G un groupe dont on note µ l’opération interne et e l’élément neutre. Considérons G donné par
G1 “ G, G0 “ ˚ et dont les flèches pm,u, iq sont définies par m “ µ, u : ˚ ÞÑ e et ipgq “ g´1 (les flèches
s et t sont trivialement définies). Alors G est un groupoïde.

L’intérêt de considérer les groupoïdes est que les groupes d’automorphismes dépendent du point auquel
on se place (en comparaison avec le groupe vu comme groupoïde dans lequel il n’y a qu’un point). Les
carquois (c’est-à-dire des graphes orientés) permettent d’illustrer cet apport de la notion de groupoïde
par rapport à celle de groupe. Dans cette représentation, un groupe est un carquois avec un point ˚ et
un ensemble de flèche correspondant aux transformations données par G. De l’autre côté, un groupoïde
peut avoir plusieurs objets x, y et z P G0 et on les flèches sont celles encodées par G1. On peut alors
facilement se convaincre de la généralisation faite.

Plus tard, lorsque nous considérerons le groupoïde du champ de Teichmüller, nous verrons que le
groupe d’automorphisme d’un point (c’est-à-dire de la paire pX, Jq avec J une structure complexe sur X
une variété différentiable) dans ce champ dépendra de ce point.

Exemple 2.2.7. Le groupoïde fondamental d’un espace topologique X est le groupoïde Π1pXq dont les
objets sont les points de X et les flèches de x P X à y P X sont les classes d’homotopie rγs de lacets
γ : r0, 1s Ñ X tel que γp0q “ x et γp1q “ y. C’est évidemment un groupoïde puisque tout morphisme y
est inversible simplement en posant γ´1 :“ γ ˝ f où fptq “ 1 ´ t.

Remarquons que la définition de ce groupoïde est exempte du choix d’un point base dans X. Contraire-
ment à la définition du groupe fondamental d’une variété qui ne peut se passer de cette donnée uniquement
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˚

x y

z

Figure 2.2 – Carquois d’un groupe et d’un groupoïde.

lorsque X est connexe. De plus, le groupoïde fondamental contient la donnée des groupes fondamentaux
de X en chacun de ses points. En effet, il est facile de se convaincre que l’on a :

@x P X, π1pX,xq » AutΠ1pXqpxq

De plus, le théorème de Van-Kampen, démontré pour les groupes fondamentaux reste valable pour les
groupoïdes fondamentaux.

Remarque. Un autre très bon exemple du gain obtenu en considérant les groupoïdes est très bien expliqué
et détaillé dans [106]. Redonner cet exemple ici nous écarterait un peu trop de la route, mais nous pouvons
tout de même en dire quelques mots. Si l’on considère le pavage du plan X :“ pZ ˆ Rq Y pR ˆ 2Zq, son
groupe de symétrie est relativement simple à expliciter. Il est composé des translations induites par le
réseau Γ :“ Zˆ 2Z et des involutions : réflexions par les lignes horizontales Rˆ tnu, verticales tm{2u ˆR
pour n et m entiers et les réflexions par les points du réseau Γ1 :“ 1

2Z ˆ Z. Cependant, les utilisations
courantes de tels pavages sont toujours sur des parties bornées de ce pavage et lorsque l’on restreint le
groupe de symétries à une telle partie, sa « taille »chute brusquement. Au contraire, en considérant le
groupoïde des symétries de ce même pavage, les restrictions à des parties bornées contiennent encore
toutes les symétrie de cette partie. En d’autres termes, la restriction à un sous-espace B Ă X de l’action
d’un groupe sur un espace X ne permet pas de rendre compte de toute l’action de G sur B dans X.

Pour continuer dans ce sens, on peut aussi se servir de l’exemple du groupoïde fondamental. Pour tout
sous-espace A de X, on peut définir le groupoïde fondamental de A dans X Π1pX,Aq comme la restriction
de Π1pXq aux éléments qui sont dans A. En suivant les définitions, on voit alors que les morphismes dans
ce groupoïde sont les classes d’homotopie de lacets dans X ayant les deux extrémités dans A. Si l’on
prend l’exemple de X :“ S1 ˆ S1 et U un voisinage de x P X suffisamment petit, on voit facilement que
π1pAq “ t0u mais Π1pX,Uq contient encore toute l’information de π1pX,xq.

Exemple 2.2.8. Un groupoïde de translation est le type de groupoïde qui nous intéressera majoritaire-
ment dans cette thèse, nous lui accordons une attention plus particulière. Une action σ d’un groupe pG, .q
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sur un ensemble d’objets M (par exemple une G-variété) défini un groupoïde GˆM
s

Ñ
t
M avec

s “ p2 : GˆM Ñ M, spg,mq “ m, t “ σ : GˆM Ñ M, tpg,mq “ σpg,mq

m : GˆM ˆσ,M,p2 GˆM Ñ GˆM, mppg1,m1q, pg2,m2qq “ pg2.g1,m1q

u : M Ñ GˆM, upmq “ pe,mq, i : GˆM Ñ GˆM, ipg,mq “ pg´1,mq

Vérifions sur cet exemple la commutativité des diagrammes

‚ d’identité :

m pe,mq

m

u

IdG0
p2

m pe,mq

m

u

IdG0
σ

‚ de composition :
Soient pm1, g1q et pm2, g2q dans GˆM tels que σpg1,m1q “ m2. On a

ppg1,m1q, pg2,m2qq ppg2.g1q,m1q

pg1,m1q m1

m

p1 p2

p2

et

ppg1,m1q, pg2,m2qq pg2.g1,m1q

pg2,m2q σpg2,m2q “ σpg2.g1,mq

m

p2 σ

σ

‚ d’associativité de la composition :
Soient pm1, g1q, pm2, g2q et pg3,m3q dans GˆM tels que σpg1,m1q “ m2 et σpg2,m2q “ m3.

ppg1,m1q, pg2,m2q, pg3,m3qq ppg1,m1q, pg3.g2,m2qq

ppg1,m1q, pg3.g2,m2qq pg3.g2.g1,m1q

IdGˆM ˆm

IdG1 ˆm m

m

‚ de composition par l’identité :

pg,mq pu ˝ spg,mq, pg,mqq “ ppe,mq, pg,mqq

pg.e,mq “ pg,mq

pu˝p2, IdGˆM q

IdG1
m

et

pg,mq ppg,mq, u ˝ σpg,mqq “ ppg,mq, pe, σpg,mqqq

pe.g,mq “ pg,mq

pIdG1 ,u˝σq

IdG1
m
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Le groupoïde obtenu est appelé groupoïde de translation.

Exemple des tores 2.E. En reprenant le travail fait dans l’exemple du tore en dimension n, on définit
le groupoïde de Teichmüller par

pHn ˆ Cnq{Gn Hn
p1

p1

où Hn “ tZ P MnpCq| detpℑZq ą 0u comme dans l’exemple des tores 2.D. Remarquons que l’image
réciproque d’un point Z P Hn par p1 est le tore associé à Z identifié au groupe de translation de celui-ci.
La flèche d’identité u : Hn Ñ pHn ˆ Cnq{Gn associe à une matrice Z P Hn la paire formée de Z et
du morphisme identité du tore. Puisque s “ p1 “ t, l’application inverse est simplement l’identité sur
pHn ˆ Cnq{Gn. L’application de composition est induite par la composition de translations et est donc
simplement donnée par l’addition.

De façon analogue on définit le groupoïde de Riemann comme le groupoïde induit par l’action de
SL2npZq, c’est-à-dire

SL2npZq ˆ pHn ˆ Cnq{Gn Hn
p2

p2˝σ

Les flèches s et t sont respectivement données par la projection p2 et par la composition de l’action de
SL2npZq par la projection p2. L’application inverse est la même que pour le champ de Teichmüller concaté-
née avec la matrice identité dans SL2npZq et l’application inverse est induite par l’inversion dans SL2npZq.
La composition est quant à elle définit de la façon suivante, si pA,Z, rasZq P SL2npZq ˆ pHn ˆ Cnq{Gn et
pB,A.Z, rbsA.Zq P SL2npZqˆpHnˆCnq{Gn de sorte que p2 ˝σ ppA,Z, rasZqq “ A.Z “ p2 ppB,A.Z, rbsA.Zqq

alors
pB, rbsA.Z,A.Zq ˝ pA, rasZ , Zq “ pBA, ra` bpRZ ` SqsZ , Zq

où

A “

˜

P Q

R S

¸

et rusZ désigne la classe d’équivalence du vecteur u P Cn par les transformations définies dans l’exemple
des tores 2.D.

Définition 2.2.9. Un groupoïde G1 Ñ G0 est un groupoïde topologique si G0 et G1 sont des espaces
topologiques et dont les flèches s, t,m, u et i sont continues et s, t sont des applications ouvertes.

Nous définissons maintenant les catégories fibrées en groupoïdes pour pouvoir définir les champs.

Définition 2.2.10. Une catégorie fibrée en groupoïdes au dessus d’une catégorie S (abrégé S-CFG) est
la donnée d’une catégorie X et d’un foncteur π : X Ñ S satisfaisant :

‚ (Existence de pullbacks) Pour tout morphisme f : v Ñ u P S et pour tout objet U P X au dessus
de u, c’est à dire πpUq “ u, il existe V P obpXq au dessus de v et F : V Ñ U tel que πpF q “ f .

‚ (Unicité à unique isomorphisme près) Pour tout diagramme
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V W

U

v w

u

H

F

π

G

π

h

f g

π

avec f “ πpF q, g “ πpGq et g ˝h “ f , il existe un unique morphisme H : V Ñ W tel que πpHq “ h

tel que G ˝H “ F .

Pour la suite

Remarque. En remplaçant w par v et h par Idv dans le diagramme précédent, on obtient l’unicité du
pullback à unique isomorphisme près.

Voici le lemme qui justifie le nom de catégorie fibrée en groupoïdes.

Lemme 2.2.11. Soit π : X Ñ S une CFG. Pour tout objet u P S, on note Xpuq la sous-catégorie de X

formée des objets π´1puq et des morphismes π´1pIdu : u Ñ uq, c’est à dire tout les morphismes F tels
que πpF q “ Idu. Alors, pour tout u P S, Xpuq est un groupoïde.

Démonstration. Soit u P S et F : X Ñ Y dans Xpuq. Le foncteur π envoie le diagramme

X Y

Y

F

Idy

sur
u y

u

Idu

Idu

Pour faire commuter le second diagramme, il faut nécessairement Idu de sorte qu’il existe une unique
flèche G : Y Ñ X de sorte que le diagramme de gauche commute. On obtient alors un inverse de F . On
utilise l’associativité pour montrer que cet inverse est un inverse à droite et à gauche.

Définition 2.2.12. Soit S un site et X un objet de S. On considère la catégorie X dont les objets sont
les morphismes f : Y Ñ X dans S et un morphisme entre deux objets f : Y Ñ X et f 1 : Y 1 Ñ X est un
morphisme ϕ (dans S) tel que le diagramme

Y Y 1

X

f

ϕ

f 1 (2.1)

commute.

Lemme 2.2.13. Soit S un site et X un objet de S. Le foncteur d’oubli

Oubli : X Ñ S

(qui envoie f : Y Ñ X sur Y et le diagramme (2.1) sur ϕ : Y Ñ Y 1) permet de munir X d’une structure
de S-CFG.
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Exemple 2.2.14. Soit M une variété différentielle. On définit la catégorie M dont les objets sont les
applications lisses f : U Ñ M où U est un objet du site Diff et dont les morphismes entre f : U Ñ M et
g : V Ñ M sont les applications ϕ : U Ñ V telles que le diagramme

U M

V

f

ϕ
g

soit commutatif. Le foncteur F : M Ñ Diff qui à f : U Ñ M associe U et envoie le diagramme précédent
sur l’application ϕ : U Ñ V confère à M une structure de Diff-catégorie fibrée en groupoïdes.

Une construction que nous utiliserons beaucoup par la suite est celle qui permet de construire une
CFG à partir d’un groupoïde.

Définition 2.2.15. Soit S un site et

G1 ˆs,t G1 G1 G0 G1 G1
m

s

t u i

un groupoïde avec G1, G0 P obpSq et des morphismes ps, t,m, u, iq des morphismes dans S. On défini la
catégorie rG1 Ñ G0sCFG de la façon suivante

‚ les objets au dessus de S P S sont les morphismes f : S Ñ G0,

‚ un morphisme au dessus de α : S Ñ S1 entre f : S Ñ G0 et f 1 : S1 Ñ G0 vérifiants f “ f 1 ˝ α est
la donnée de

S G1

S1 G0

ϕ

α s t

f 1

f

tel que les deux sous-diagrammes

S G1

G0

ϕ

s
f

S G1

S1 G0

ϕ

α t

f 1

soient commutatifs.

Le morphisme identité de f : S Ñ G0 est le morphisme u ˝ f : S Ñ G1.
La composition se définit à l’aide de l’application m de la façon suivante. Si on considère une paire de
morphismes composables, c’est à dire un diagramme

S G1

S1 G0

S2

ϕ

α s t
ϕ1

f 1

α1

f

f2
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tel que s ˝ ϕ “ f , s ˝ ϕ1 “ f 1, t ˝ ϕ “ f 1 ˝ α et t ˝ ϕ1 “ f2 ˝ α1 alors

t ˝ ϕ “ f 1 ˝ α “ s ˝ ϕ1 ˝ α

et on peut donc composer ϕ et ϕ1 ˝ α dans G1. On pose alors ϕ1 ˝ ϕ :“ mpϕ, ϕ1 ˝ αq.

Lemme 2.2.16. Le foncteur d’oubli

Oubli : rG1 Ñ G0sCFG Ñ S

(qui envoie f : S Ñ G0 sur S et α sur lui même en oubliant la commutativité des diagrammes de la
définition précédente) confère à rG1 Ñ G0sCFG une structure de catégorie fibrée en groupoïdes.

Définition 2.2.17. Une 2-categorie C est la donnée

‚ d’une classe d’objets obpCq,

‚ pour chaque paire d’objets X,Y P obpCq d’une catégorie HomCpX,Y q dont les objets f : X Ñ Y

seront appelés 1-morphismes et les morphismes α : f Ñ g entre deux objets f : X Ñ Y et g : X Ñ Y

seront appelés les 2-morphismes et notés

X Y

f

g

α

et on appelle composition verticale la composition β ˝v α : de deux 2-morphismes α : F Ñ F 1 et
β : F 1 Ñ F 2,

‚ pour chaque triplet d’objets X, Y et Z P obpCq d’un foncteur

p˝, ˝hq : HomCpY, Zq ˆ HomCpX,Y q Ñ HomCpX,Zq

et on appellera composition F ˝G l’image de F P HomCpY,Zq et G P HomCpX,Y q par ce foncteur
et composition horizontale β ˝h α l’image de α : F Ñ G et β : G Ñ H par ce foncteur.

Et ces données doivent satisfaire les propriétés suivantes :

‚ la classe obpCq muni des 1-morphismes et de leur composition forme une catégorie,

‚ la composition horizontale de 2-morphismes est associative,

‚ le 2-morphisme identité IdIdX
est un neutre pour la composition horizontale.

Définition 2.2.18. Soit S un site. Un morphisme f entre deux catégories fibrées en groupoïdes πX :
X Ñ S et πN : N Ñ S est un foncteur F : X Ñ N entre les catégories sous-jacentes tel que πN ˝F “ πX.

Étant donné deux morphismes de catégories fibrées en groupoïdes F,G : X Ñ N, une transformation
naturelle entre deux morphismes de CFGs ϕ : F ñ G est une transformation naturelle ϕ de F à G telle
que la composition πN ˝ ϕ soit la transformation identité de πX.

On note HOMpX,Yq la catégorie dont les objets sont les morphismes entre les CFGs X et Y et dont
les morphismes sont les transformations naturelles entre morphismes de CFGs.
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Exemple 2.2.19. La catégorie Groupoides des groupoïdes est une 2-catégorie dont les objets sont les
groupoïdes, les 1-morphismes sont les foncteurs entre groupoïdes et les 2-morphismes sont les transfor-
mations naturelles.

Lemme 2.2.20. L’ensemble des catégories fibrées en groupoïdes au dessus d’un site S muni des mor-
phismes et des 2-morphismes forme une 2-catégorie, notée Stk. De plus, pour toute paire de catégories
fibrées en groupoïdes X, N, l’ensemble HomStkpX,Nq est un groupoïde.

Définition 2.2.21. Soient X, Y et Z trois S-catégories fibrées en groupoïdes. Soient f : Y Ñ X et
g : Z Ñ X deux morphismes de CFGs. Le produit fibré Y ˆX Z est la catégorie fibrée en groupoïdes dont

‚ les objets sont les triplets pY, Z, ϕq où Y P obpYq, Z P obpZq et ϕ : fpY q Ñ gpZq est un isomorphisme
au dessus de l’identité de S,

‚ les morphismes entre pY, Z, ϕq et pY 1, Z 1, ϕ1q sont les couples de morphismes F : fpY q Ñ fpY 1q et
G : gpZq Ñ gpZ 1q au dessus du même morphisme dans S tels que le diagramme

fpY q fpY 1q

gpZq gpZ 1q

F

ϕ ϕ1

G

soit commutatif.

Proposition 2.2.22. Soit X et Y deux objets d’un site S. On a une équivalence entre les catégories
HOMpX,Y q et HomSpX,Y q.

Cette proposition est d’un intérêt fondamental pour ramener l’étude des morphismes entre CFGs à
l’étude des morphismes entre objets classiques. En particulier, on peut parler de propriétés de morphismes
entre CFGs en termes de propriétés sur les objets, sous certaines conditions.

Définition 2.2.23. Sur un site S, une propriété P sur les morphismes de S est

‚ préservée par changement de base si pour tout morphisme f : X Ñ Y ayant la propriété P et tout
morphisme Y 1 Ñ Y , le morphisme Y 1 ˆY X Ñ Y 1 à la propriété P,

‚ locale si pour tout morphisme f : X Ñ Y et pour tout recouvrement tYi Ñ Y u tel que les
morphismes fi : X ˆY Yi Ñ Yi aient la propriété P alors le morphisme f a la propriété P.

Proposition 2.2.24. Au dessus du site Sch (avec la topologie étale), les propriétés suivantes sont pré-
servées par changement de base et sont locales : lisse, étale, séparé, quasi-séparé, propre, plat, localement
de type fini. Au dessus du site AnC (avec la topologie usuelle), l’holomorphie est une propriété locale et
préservée par changement de base.

2.2.3 Pré-champs et champs

On va, dans un premier temps, donner une définition générale des pré-champs et des champs (essen-
tiellement tirée de [100]), puis, on donnera une définition plus pratique en spécifiant un site géométrique
(AnC, Sch, Diff, ...) au dessus duquel on se placera. Le lecteur adepte de l’apprentissage inductif pourra
consulter les définitions dans l’ordre inverse.

Commençons par donner une idée heuristique des pré-champs et des champs.
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Slogans. Soit S un site et π : X Ñ S une CFG.

‚ π : X Ñ S est un pré-champ si on peut recoller les objets,

‚ π : X Ñ S est un champ si on peut recoller les objets et les morphismes.

Voici une façon de formaliser ceci. Soient U P obpSq et tUi Ñ Uu un recouvrement. Pour tout n-uplet
d’indices i1, ¨ ¨ ¨ , in, on notera Ui1,¨¨¨ ,in le produit fibré Ui1 ˆU ¨ ¨ ¨ ˆU Uin . On notera également prj1,¨¨¨ ,jk

la projection de Ui1,¨¨¨ ,in sur Uj1 ˆU ¨ ¨ ¨ ˆU Ujk
.

Définition 2.2.25. Soient S un site, U P obpSq, tUi Ñ Uu un recouvrement et π : X Ñ S une CFG. Un
objet avec une donnée de descente est la donnée d’une collection d’objets ξi P XpUiq et d’isomorphismes

ϕij : pr˚
1 ξj Ñ pr˚

2 ξi

dans XpUijq qui satisfont la condition de cocycle

pr˚
1,3 ϕik “ pr˚

1,2 ϕij ˝ pr˚
2,3 ϕjk : pr˚

3 ξk Ñ pr˚
1 ξi

Un morphisme entre deux objets avec des données de descente pξi, ϕijq et pηi, ψijq est la donnée d’une
collection de morphismes αi : ξi Ñ ηi P XpUiq tels que les diagrammes

pr˚
2 ξj pr˚

2 ηj

pr˚
1 ξ1 pr˚

2 ηi

ϕij

pr˚
2 αj

ψij

pr˚
2 αi

commutent.

On définit ainsi pour chaque objet U P S et recouvrement U :“ tUi Ñ Uu une catégorie, notée XpUq,
dont les objets sont les objets avec une donnée de descente pξi, ϕijq et les flèches sont les morphismes
définis entre eux.

Remarque. Cette catégorie ne dépend pas du choix des produits fibrés Uij et Uijk, dans le sens où pour
deux choix différents, les catégories obtenues sont équivalentes.

On va maintenant construire un foncteur F : XpUq Ñ XpUq. Pour tout ξ P XpUq, on construit un
objet avec une donnée de descente F pξq sur un recouvrement U “ tfi : Ui Ñ Uu de la façon suivante.
Les objets tξiu sont les pullbacks f˚

i ξ et les isomorphismes

ϕij : pr˚
2 f

˚
j ξ Ñ pr˚

1 f
˚
i ξ

sont les isomorphismes qui viennent du fait que pr˚
1 f

˚
i ξ et pr˚

2 f
˚
j ξ sont des pullbacks de ξ sur Uij . De

plus, si l’on a une flèche α : ξ Ñ η dans XpUq, on obtient des flèches f˚
i α : f˚

i ξ Ñ f˚
i η qui fournissent

des flèches entre les objets avec donnée de descente définis à partir de ξ et de η.

Remarque. La définition est plus agréable si l’on a le diagramme suivant sous les yeux
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Uijk Ujk

Uij Uj

Uik Uk

Ui U

pr1,2
pr1,3

pr2,3

Définition 2.2.26. Un objet avec une donnée de descente pξi, ϕijq dans XptUi Ñ Uuq est dit effectif s’il
est isomorphe à l’image d’un objet de XpUq par F .

On dira plus souvent que la donnée de descente est effective.
Un objet avec une donnée de descente pξi, ϕijq dans XpUq, où U “ tfi : Ui Ñ Uu, est effective si il

existe un objet ξ P XpUq et des flèches ξi Ñ ξ au dessus de fi : Ui Ñ U tels que pour tout i et tout j, les
diagrammes

pr˚
2 ξj pr˚

1 ξi

ξj ξi

ξ

ϕij

commutent.
On peut donc voir assez facilement qu’un pré-champ π : X Ñ S est un champ si, et seulement si, tous

les objets avec une donnée de descente sont effectifs.
Puisque l’on travaillera souvent à équivalence près de CFG (ou plutôt à Morita équivalence près de

groupoïdes, voir la théorème 2.3.8), il reste à voir que cette définition est stable sous cette relation.

Définition 2.2.27. Soit S un site. Une CFG π : X Ñ S est un

‚ pré-champ si pour tout objet U P obpSq, pour tout objets ξ et η P XpUq et tout recouvrement
tUi Ñ Uu, l’application

HomXpUqpξ, ηq Ñ HomXpUqpF pξq, F pηqq

est une bijection (autrement dit, F est un foncteur pleinement fidèle).

‚ champ si pour tout objet U P obpSq et tout recouvrement tUi Ñ Uu, le foncteur F : XpUq Ñ XpUq

est une équivalence.

Proposition 2.2.28 ([100, Proposition 4.12]). Soient S un site, π : X Ñ S et π : Y Ñ S deux CFGs
ainsi que F : X Ñ Y une équivalence de CFGs. Alors, pour tout objet U P obpSq et tout recouvrement
U “ tUi Ñ Uu, on a un foncteur FU : XpUq Ñ YpUq définit par

FU ppξi, ϕijqq “ pF pξiq, F pϕijqq, FU pαiq “ F pαiq
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et on a que π : X Ñ S est un pré-champ (resp. champ) si, et seulement si, π : Y Ñ S est un pré-champ
(resp. champ).

Nous donnons maintenant une caractérisation équivalente des (pré)-champs sur les sites géométriques
qui nous intéresserons par la suite.

Remarquons d’abord que sur les sites AnC, Sch ou Diff, les recouvrements tfi : Ui ãÑ Uu sont des
immersions ouvertes et on peut alors écrire U |Ui

pour désigner f˚
i U .

Définition 2.2.29. Soit S “ AnC, Sch ou Diff. Un pré-champ est une S-CFG π : X Ñ S satisfaisant
pour tout U P obpSq et tout recouvrement ouvert tUiu de U :

‚ (Recollement de morphismes) soient deux objets X,Y P XpUq et une famille pϕi : X|Ui
Ñ Y |Ui

q

d’applications telle que ϕi|UiXUj
“ ϕj |UiXUj

, il existe un unique morphisme ϕ P HomXpUqpX,Y q

telle que ϕ|Ui
“ ϕi pour tout i.

Un champ (au dessus de S) est un pré-champ satisfaisant :

‚ (Recollement d’objets) Soient Xi P XpUiq pour tout i et ϕij : Xj |UiXUj
Ñ Xi|UiXUj

dans XpUiXUjq

satisfaisant la condition de cocycle
ϕij ˝ ϕjk “ ϕij

pour tout triplet pi, j, kq, alors il existe un unique objet X P XpUq avec des isomorphismes ϕi :
X|Ui Ñ Xi tels que ϕij ˝ ϕj “ ϕi.

L’axiome de recollement des objets est appelée donnée de descente et lorsque celle-ci est vérifiée pour
une CFG π : X Ñ S, on dit que la descente est effective.

Remarque. Notons que la notation X|Ui1¨¨¨in
ne permet pas de différencier les inclusions

Uj

Ui X Uj U

Ui

fi

fj

Mais, si l’on note fijk,ij : UiXUjXUk ãÑ UiXUj (resp. fijk,i : UiXUjXUk ãÑ Ui), on a les transformations
naturelles suivantes :

Φijk,ij,i : f˚
ijk,ijf

˚
ij,i Ñ f˚

ijk,i.

et on devrait alors écrire les conditions de cocycle en tenant compte de ces transformations (voir [43,
Remark 1.2.1] pour un calcul complet).

Exemple 2.2.30. Soit G un groupe de Lie. On définit la catégorie BG dont les objets sont des G-fibrés
principaux P Ñ U (dans le site Diff) et dont les morphismes pP Ñ Uq Ñ pP 1 Ñ V q sont les diagrammes
cartésiens

P P 1

U V

f
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tels que f soit G-équivariant. Le foncteur d’oubli

π : BG Ñ Diff, pP Ñ Uq ÞÑ U

confère à BG une structure de champ que l’on appelle champ classifiant de G.

Lemme 2.2.31. Soit X un objet d’un site S. Alors la CFG

Oubli : X Ñ S

est un champ.

Lemme 2.2.32. La CFG rG1 Ñ G0sCFG associée à un groupoïde G1 Ñ G0 est un pré-champ.

Lemme 2.2.33 (Lemme de Yoneda). Soit X un champ au dessus d’un site S et X P obpSq. Alors, le
foncteur

HOMpX,Xq Ñ XpXq

est une équivalence de catégories.

Exemple 2.2.34. On se place sur le site Diff. Soit G un groupe de Lie et M P obpDiffq. Par le lemme
de Yoneda, on a une bijection entre le groupoïde HOMpM,BGq et le groupoïde BGpMq des G-fibrés
principaux sur M .

Théorème 2.2.35. Soient S un site et X, Y et Z trois champs au dessus de S. Soient F : Y Ñ X et
G : Z Ñ X deux morphismes entre ces champs. Le produit fibré Y ˆX Z existe et est défini pour tout
X P obpSq par

Y ˆX ZpXq “ tpf, g, ϕq| f : X Ñ Y, g : X Ñ Z, ϕ : F ˝ f » G ˝ gu

2.2.4 Champification

Il arrive que la donnée de descente d’un pré-champ X ne soit pas effective, autrement dit X n’est pas
un champ. Il existe une construction qui permet de champifier une CFG, c’est à dire de construire une
autre CFG équivalente, à un 2-morphisme près, à la première et qui respecte les conditions d’un champ.

Définition 2.2.36. Soit X0 une catégorie fibrée en groupoïdes au dessus d’un site S. Une champification
de X0 est un champ π : X Ñ S avec un morphisme de CFG p : X0 Ñ X tel que pour tout champ
Y, le foncteur HompX,Yq Ñ HompX0,Yq induit par la pré-composition par p soit une équivalence de
catégories.

Théorème 2.2.37. Soit X0 une catégorie fibrée en groupoïdes au dessus d’un site S et soient X et X1

deux champifications de X0 données par des morphismes F : X0 Ñ X et G : X0 Ñ X1. Alors il existe un
isomorphisme (unique à un 2-isomorphisme près) f : X Ñ X1 et un 2-isomorphisme f ˝ F

α
ñ G.

La construction du foncteur de champification est un peu lourde et la preuve peu instructive. L’idée de
preuve est assez similaire à la faisceautisation d’un pré-faisceau. Étant donné un pré-champ π : X Ñ S,
on construit une catégorie X1 dont les objets sont les données de descente. Plus précisément, soit S P S,
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on définit la catégorie X1 dont les objets sont les couples pU , Rq où U “ tϕi : Ui Ñ Uu est un recouvrement
de U P obpSq et R “ ptXiu, tϕijuq est une donné de descente relative à U . Si

pU , Rq “ ptϕi : Ui Ñ Uu, ptXiu, tϕijuqq et pV, Sq “ ptψi : Vi Ñ V u, ptYiu, tψijuqq

sont deux tels objets, on définit les morphismes HomX1 ppU , Rq, pV, Sqq entre eux comme l’ensemble des
couples pf, tαijuq où f : U Ñ V et αij : Xi|UiˆV Vj

Ñ Yj telles que pour tout i, j, k, l, le diagramme

Xi|W Yk|W

Xj |W Yl|W

ϕij

αik

ψkl

αjl

commute, où W :“ pUi ˆU Ujq ˆV pVk ˆV Vlq.
On montre ensuite que X1 est bien un champ et que l’on a un isomorphisme naturel X » X1.
Dans certains cas particuliers, par exemple au dessus du site AnC ou Sch, le foncteur de champification

peut être construit en termes de torseurs (voir la thèse [29] de C. Fromenteau pour le cas AnC).

Définition 2.2.38. Si G1 Ñ G0 est un groupoïde, on note rG1 Ñ G0s la champification de la CFG
associée.

Définition 2.2.39. Soit π : X Ñ S un champ. Un atlas de X est un groupoïde G1 Ñ G0 tel que
rG1 Ñ G0s soit équivalent à X.

Exemples 2.2.40.

‚ (Champ classifiant d’un groupe de Lie) Dans l’théorème 2.2.30 le champ BG est équivalent au
champ rGˆ pt Ñ pts.

‚ (Champ quotient) On se place au dessus du site Diff (voir [43, Example 2.5] pour le cas ou le site
est Top). Soit G un groupe agissant sur une variété différentiable M . On définit le champ quotient
rM{Gs “ rGˆM Ñ M s (confère théorème 2.2.8) dont les objets sont les G-fibrés principaux P Ñ U ,
avec U P obpDiffq munis d’une application G-équivariante f : P Ñ M et dont les morphismes
pP Ñ U, fq Ñ pP 1 Ñ V, f 1q sont les diagrammes cartésiens

P P 1

U V

α

tels que α soit G-équivariante et vérifie f 1 ˝ α “ f . De la même façon, le foncteur oubli

π : rM{Gs Ñ Diff, pP Ñ U, fq ÞÑ U

confère à rM{Gs une structure de champ.

Exemple des tores 2.F. Notons Xn l’espace total de la famille universelle du tore, c’est-à-dire Xn :“
pHn ˆ Cnq{Gn. Le champ

rXn Ñ Hns
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est la catégorie dont les objets sont les applications holomorphes f : S Ñ Hn où S est un espace C-
analytique et les morphismes entre f : S Ñ Hn et f 1 : S1 Ñ Hn sont les applications holomorphes

α : S1 Ñ S telles qu’il existe ϕ : S Ñ pHn ˆ Cnq{Gn vérifiant :

$

&

%

p1 ˝ ϕ “ f

p1 ˝ ϕ “ f 1 ˝ α

En particulier, en utilisant les produits fibrés, on peut voir les objets de ce champ comme les familles
de tores au dessus d’un espace C-analytique S P AnC :

S ˆf,Hn,p1 Xn Xn

S Hn

p1

f

et les morphismes comme les applications entre familles telles que la composition de pullback soit respec-
tée, c’est-à-dire

Xn S ˆf,Hn,p1 Xn S ˆα,S1,p1 pS1 ˆHn Xnq S1 ˆf 1,Hn,p1 Xn Xn

Hn S S S1 Hn

p1 p1

f

α f 1

Remarques.

‚ La propriété universelle de la famille Xn Ñ Hn implique que cette catégorie est équivalente à la
catégorie formée de toutes les familles de Tn et dont les morphismes sont les applications entre
elles. C’est cette notion que les champs de Teichmüller et de modules de Riemann vont essayer de
généraliser dans le cas où il n’existe pas de famille universelle par exemple.

‚ La remarque précédente reste valide si l’on change le site AnC pour le site Diff.

‚ De la même façon, on peut construire le champ associé au groupoïde de Riemann

rSL2npZq ˆ Xn Ñ Hns

et obtenir les résultats analogues.

2.3 Structures algébriques et analytiques sur les champs

Nous allons maintenant spécifier les deux sites principaux sur lesquels nous allons travailler pour
pouvoir munir les champs de structures analytiques/algébriques.

2.3.1 Champs algébriques et champs d’Artin

On se place maintenant sur le site Schét munit de la topologie étale (les résultats sont aussi valables
pour la topologie fppf). Rappelons que un recouvrement étale d’un schéma X est la donnée d’une famille
de morphismes fi : Ui Ñ X entre schémas tels que les fi soient des morphismes étales (morphismes plats
et non-ramifiés).

Définition 2.3.1. Soit S un schéma. Un espace algébrique au dessus de S est un faisceau d’ensembles
X : pSch{Sqop Ñ Set tel que
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‚ il existe un schéma X P Schét et un morphisme X Ñ X surjectif et étale,

‚ la diagonale ∆ : X Ñ X ˆ X est représentable.

Puisque les espaces algébriques ne sont pas des objets centraux dans cette thèse, nous laissons le
lecteur se référer à [57] pour plus de détails sur ces espaces et les notions délicates qui leur sont reliées.

Définition 2.3.2. Soit f : X Ñ Y un morphisme entre catégories fibrées en groupoïdes au dessus du site
Sch. Le morphisme f est dit représentable si pour tout objet X de Sch et pour tout morphisme entre
catégorie fibrée en groupoïdes ϕ : X Ñ Y il existe un espace algébrique M tel que le produit fibré XˆYX

soit équivalent à la catégorie M .

Définition 2.3.3. Un champ X au dessus de Sch est un champ d’Artin si

‚ sa diagonale X Ñ X ˆ X est représentable, séparée et quasi-compacte,

‚ il existe un objet U de Sch et un morphisme surjectif et lisse U Ñ X.

Exemples 2.3.4.

‚ Un groupe algébrique lisse G agissant sur un schéma séparé X, alors rX{Gs est un champ d’Artin.

‚ BG avec G lisse est un champ d’Artin.

Proposition 2.3.5. Soit X un champ d’Artin. Alors X admet un atlas, c’est-à-dire qu’il existe des espaces
algébriques R et U et des morphismes ps, t,m, u, iq de Sch avec s et t lisses tels que le groupoïde R

s
Ñ
t
U

soit un atlas de X.

2.3.2 Groupoïdes analytiques, champs analytiques

On se place désormais au dessus du site AnC des espaces C-analytiques muni de la topologie usuelle
des recouvrements par des ouverts analytiques.

Définition 2.3.6. Un groupoïde analytique est un groupoïde

X1 ˆs,t X1
m
Ñ X1

s
Ñ
t
X0

u
Ñ X1

i
Ñ X1

avec X1 et X0 des espaces C-analytiques séparés et dont les cinq applications s, t,m, u et i sont holo-
morphes et lisses.

Définition 2.3.7. Soient X “ X1 Ñ X0 et Y “ Y1 Ñ Y0 deux groupoïdes analytiques. Un morphisme
de groupoïdes analytiques entre X et Y est un couple d’applications holomorphes f : X0 Ñ H0 et
F : Y1 Ñ Y1 telles que les diagrammes suivants

X1 Y1

X0 Y0

F

sX sY

f

X1 Y1

X0 Y0

F

tX tY

f

commutent.
De plus, si f est surjective et si les diagrammes sont cartésiens alors pf, F q est appelé morphisme de

Morita
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Définition 2.3.8. Deux groupoïdes X “ X1 Ñ X0 et Y “ Y1 Ñ Y0 sont dits Morita équivalents si il
existe un troisième groupoïde Z “ Z1 Ñ Z0 muni de deux morphismes de Morita

$

&

%

fX : Z0 Ñ X0

FX : Z1 Ñ X1
et

$

&

%

fY : Z0 Ñ Y0

FY : Z1 Ñ Y1

L’intérêt de cette équivalence est qu’elle passe en une équivalence entre les champs associés :

Proposition 2.3.9. Si X “ X1 Ñ X0 et Y “ Y1 Ñ Y0 sont deux groupoïdes Morita équivalents alors,
les champs rX1 Ñ X0s et rY1 Ñ Y0s sont catégoriquement équivalents.

Définition 2.3.10. Soit X un champ au dessus de AnC. On dit que X est un champ analytique s’il existe
un espace C-analytique X et un morphisme ϕ : X Ñ X représentable, surjectif et lisse.

Proposition 2.3.11. Soit X un champ analytique. Alors, il existe un groupoïde analytique X1 Ñ X0 tel
que le champ associé soit équivalent à X.

Démonstration. Par définition, il existe un espace C-analytique X0 et un morphisme ϕ : X0 Ñ X repré-
sentable, surjectif et lisse. Par représentabilité du morphisme, il existe un espace C-analytique X1 tel que
X0 ˆX X0 » X1. Notons pi : X1 » X0 ˆX X0 Ñ X0, i “ 1, 2, la projection sur le i-ème facteur.

On définit maintenant les flèches de la façon suivante

‚ On pose s : p1pIdX1 q et t “ p2pIdX1 q.

‚ L’application u se définit simplement par

u : X0 Ñ X1, f ÞÑ pf, f, Idϕpfqq

‚ En identifiant X0 ˆXX0 ˆXX0 avec pX0 ˆX X0qˆXX0, on a une équivalence naturelle de catégorie

pX0 ˆX X0q ˆX X0
„

ÝÑ X1 ˆp1,X0,p2 X1,

ppf, g, ϕq, h, ψq ÞÝÑ ppf, g, ϕq, pg, h, ψqq

On définit alors m par

m : X1 ˆp1,X0,p2 X1 » X0 ˆX X0 ˆX X0 ÝÑ X0 ˆX X0 » X1

ppf, g, ϕq, pg, h, ψqq ÞÝÑ pf, h, ψ ˝ ϕq

‚ Finalement, on définit l’application i par

i : X0 ˆX X0 » X1 ÝÑ X0 ˆX X0 » X1,

pf, g, ϕq ÞÝÑ pg, f, ϕ´1q

On vérifie ensuite que X1 Ñ X0 définit bien un groupoïde dont le champ (analytique) associé est équi-
valent à X.

On aura l’utilité des notions de sous-champs ouverts/fermés.
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Définition 2.3.12. Soit X Ñ AnC un champ analytique. Un sous-champ ouvert X1 (resp. fermé) de X

est une sous-catégorie strictement pleine 1 telle que telle que X1 Ñ AnC soit un champ analytique et telle
que X1 Ñ X soit une immersion ouverte (resp. fermée).

Ainsi que de la notion d’espace topologique sous-jacent à un champ analytique ou algébrique.

Définition 2.3.13. L’espace topologique associé à un groupoïde analytique X1 Ñ X0 (resp. algébrique)
est l’espace topologique obtenu comme quotient de X0 par la relation d’équivalence induite par X1.

La notion de composante connexe d’un groupoïde fera donc référence à la composante connexe de
l’espace topologique associé.

Évidemment, deux groupoïdes Morita équivalents ont des espaces topologiques associés sont homéo-
morphes.

2.4 Champ de Teichmüller

Revoyons un peu plus en détail la construction du champ de Teichmüller. Reprenons les notations
du début du chapitre : X est une variété différentiable de dimension 2n, connexe et orientée. On note
IpXq l’ensemble des structures complexes sur X. Si V est un ouvert de IpXq on définit le champ de
Teichmüller TV pXq de X restreint à V comme étant la catégorie dont

‚ les objets sont les déformations marquées de X au sens de la théorème 1.1.7 du chapitre précédent
telles que les structures complexes sur chacune des fibres soient encodées par un élément J P

V , on appellera ces déformations des V -familles de X. C’est à dire des morphismes lisses π :
X Ñ B entre des objets du site AnC tels que les fibres soient des variétés complexes compactes
toutes difféomorphes à Xdiff . On supposera de plus que X Ñ B, avec X et B vus comme espaces
réels analytiques, est difféomorphe (donné par le marquage) à un fibré de fibre Xdiff et de groupe
structural Diff 0

pXq,

‚ les morphismes sont les diagrammes cartésiens

X 1 X

B1 B

π1 π

f

où les isomorphismes f˚X » X 1 induisent un Diff 0
pXq-isomorphisme de la structure de fibré.

Lemme 2.4.1. Pour tout ouvert V Ă IpXq, la catégorie TV pXq munie du foncteur d’oubli

Oubli : TV pXq Ñ AnC

est une CFG.

Démonstration. On vérifie l’existence de pullbacks et leur unicité à unique isomorphisme près.

1. c’est-à-dire, HomX1 pX, Y q “ HomXpX, Y q pour tout couple d’objets X, Y P obpX1q et si un objet Y de X est isomorphe
à un objet X dans X1 alors Y P obpX1q
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Soit π : X Ñ B une V -famille et f : B1 Ñ B un morphisme entre espaces C-analytiques. On peut
construire la famille pullback f˚X Ñ B1 et on obtient l’existence de pullbacks. L’unicité des pullbacks
est essentiellement donné par la propriété universelle du produit fibré. Considérons trois V -familles πi :
X Ñ Bi, i “ 1, 2, 3 ainsi que des applications f : B2 Ñ B1, g : B3 Ñ B1 et h : B2 Ñ B3 qui vérifient

‚ X2 est biholomorphe à f˚X1,

‚ X3 soit biholomorphe à g˚X1,

‚ et f “ g ˝ h.

On résume la situation dans le diagramme suivant :

X2 X3

X1

B2 B3

B1

π2 π3

h

f g

π1

Par propriété du produit fibré, on a un biholomorphisme naturel entre h˚X3 » h˚pg˚X1q et pg˝hq˚X1. Par
hypothèses, on a pg˝hq˚X1 “ f˚X1 qui est biholomorphe à X2. Finalement on a donc un biholomorphisme
entre h˚X3 et X2. L’unicité de cette application est donné par la propriété universelle du produit fibré.

Proposition 2.4.2. Pour tout ouvert V Ă IpXq, la catégorie TV pXq muni du foncteur d’oubli

Oubli : TV pXq Ñ AnC

est un champ.

Démonstration. On doit maintenant montrer que la CFG Oubli : TV pXq Ñ AnC vérifie le recollement
des morphismes ainsi que la donnée de descente.

Soient π1 : X1 Ñ B et π2 : X2 Ñ B deux V -familles, un recouvrement tUiu de B ainsi qu’une famille
d’application ϕi : X1|π´1

1 pUiq
Ñ X2|π´1

2 pUiq
telles que ϕi et ϕj soient égales sur l’intersection π´1

1 pUiXUjq.
Cette famille d’application se recolle évidemment pour donner un biholomorphisme entre X1 et X2.

Soit πi : Xi Ñ Ui une collection de V -familles et un cocycle ϕij donnant des isomorphismes entre
π´1
i pUi XUjq et π´1

j pUi XUjq. On peut alors construire la V -famille X Ñ S donnée par X :“ p
Ů

i Xiq { „

avec „ la relation d’équivalence donnée par le cocycle tfiju. On conclut que la donnée de descente est
effective et donc que TV pXq Ñ AnC est un champ comme annoncé.

Comme nous l’avons vu dans l’exemple de l’espace de modules de Riemann des tores de dimensions
n ě 2, il existe des variétés pour lesquelles cet espace ou l’espace de Teichmüller n’admettent pas de
structure d’espace C-analytique. Cependant, sous des hypothèses sur les groupes d’automorphismes des
structures complexes de la variété étudiée, le champ de Teichmüller admet une structure de champ
analytique. Autrement dit, il existe un groupoïde analytique G1 Ñ G0, avec G0 et G1 des espaces C-
analytiques (et dont les flèches sont des applications holomorphes) tel que le champ de Teichmüller soit
équivalent au champ rG1 Ñ G0s. Plus précisément,
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Théorème 2.4.3 (Meersseman [74, Theorem 2.13]). Soit X une variété différentiable orientée compacte
de dimension paire et V un ouvert de IpXq. Supposons qu’il existe n P N tel que pour toute structure
complexe J P V , la dimension du groupe d’automorphisme de la variété complexe pX, Jq soit bornée par
n. Alors, l’espace de Teichmüller TV pXq admet une structure de champ analytique.

La structure de champ analytique (sous l’hypothèse du théorème précédent) du champ de Teichmüller
est donnée dans [74] par la construction d’un atlas donné par le groupoïde d’holonomie généralisé. Même
si nous ne reviendrons pas sur les détails de la construction de cet atlas, la sous-section qui suit reprend
les principales idées.

2.4.1 Construction de l’atlas

La principale difficulté de la construction d’un atlas pour le champ de Teichmüller réside dans les
sauts possibles de la fonction h0pJq “ dimH0ppX, Jq,ΘJq où ΘJ est le faisceau des germes de champs
de vecteurs holomorphes sur pX, Jq. Le première étape de construction de cet atlas est de se placer dans
le cas où cette fonction est constante en utilisant la notion d’homotopie entre déformations. Dans ce
contexte, on construit un atlas en recollant les espaces de Kuranishi par les "bons morphismes". Dans le
cas général, on stratifie IpXq en sous-espaces sur lesquelles h0pJq est constante et on recolle ces différentes
strates en épaississant les strates de petite dimension afin d’obtenir des strates de même dimension que
l’on recollera pour former un atlas du champ recherché.

On voit déjà assez clairement dans cette explication grossière l’intervention de l’hypothèse de l’exis-
tence d’une borne à la fonction h0 sur V .

Nous proposons maintenant de donner une idée de la construction du champ de Teichmüller TV pXq

d’une variété X sous l’hypothèse que Aut1
pX, Jq :“ AutpXq X Diff 0

pXq soient des groupes triviaux pour
tout J P V . Remarquons que cette condition implique immédiatement h0pJq “ 0 pour tout J P V .
L’avantage de ce cadre tient au fait que dans ce cas l’action de Diff 0

pxq sur V est libre et définit un
feuilletage sur V . De plus, les espaces de Kuranishi fournissent des sections localement transverses à ce
feuilletage.

Soit V un ouvert de IpXq. Prenons U “ tUαu un recouvrement de V par des ouverts Uα tels que chaque
Uα soit analytiquement isomorphe à un produit KαˆH, où Kα est l’espace de Kuranishi d’un point Jα P

Uα et H est un complémentaire de H0ppX, Jαq,Θαq (avec Θα :“ ΘJα) dans A0,0pT 1,0pX, Jαqq (voir [74]
pour plus de détails). On définit alors le groupoïde de Teichmüller de X (restreint à V ) comme la catégorie
dont les objets sont les points de

Ů

Kα et les morphismes sont les compositions d’applications ϕα,β :
Kα X Kβ Ă Kα Ñ Kβ X Kα Ă Kβ uniquement définies comme applications vérifiant la commutativité
deu diagramme

Uα X Uβ Uα X Uβ

Kα XKβ Ă Kα Kβ XKα Ă Kβ

Id

ϕα,β

L. Meersseman montre [74, Proposition 7.5] que ce groupoïde est analytique et même étale et définit
un atlas du champ de Teichmüller TV pXq.

Passons maintenant au cas où la fonction h0 n’est pas constante sur V .
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Remarque. Le problème de saut de la fonction h0 est du à l’apparition de fibres biholomorphes (plus
précisément, si h0 est non-constante, on peut stratifier l’espace de Kuranishi par la fonction h1. On
obtient alors que la restriction de la famille de Kuranishi à une strate non-maximale est une famille
localement triviale. Pour plus de détails, le lecteur pourra consulter [72]) le long d’un espace C-analytique
de dimension strictement positive dans l’espace de Kuranishi et est la raison pour laquelle l’espace de
Kuranishi n’est pas toujours une section localement transverse au feuilletage induit par l’action de Diff 0

sur I0.

Définition 2.4.4. Soient J1 et J2 deux points dans IpXq. Une homotopie entre J1 et J2 est la donnée
d’un chemin lisse I dans IpXq d’extrémités J1 et J2 sur lequel la fonction h0 est constante.

On peut montrer [74, Proposition 5.6] que pour chaque composante connexe de V , il n’y a qu’un
nombre dénombrable de classes d’homotopie de structures complexes. Cette notion permet alors de
construire un feuilletage de V . Il faudrait encore raffiner un peut ce feuilletage en découpant chaque
feuille en sous-espaces sur lesquels le complémentaire H utilisé précédemment peut être le même pour
chaque espace de Kuranishi des points de cette feuille. L’idée est ensuite de construire comme précédem-
ment le groupoïde d’holonomie associé à chaque feuille et de recoller ensuite ces groupoïdes.

Exemple des tores 2.G. Le champ
rXn Ñ Hns

est le champ de Teichmüller du tore de dimension n (voir [74]).
On peut aussi montrer que le quotient géométrique de ce quotient est isomorphe au quotient SL2npRq{ SLnpCq

2.5 Espace de modules de Riemann

De la même manière que l’on a construit le champ de Teichmüller, pour tout ouvert V Ă IpXq, on
peut construire le champ des modules de Riemann MV pXq d’une variété X. Comme précédemment, soit
X est une variété différentiable de dimension 2n, connexe et orientée. On définit le champ de modules de
Riemann MV pXq de X restreint à V comme étant la catégorie dont

‚ les objets sont les V -familles de X.

‚ les morphismes entre V -familles sont les diagrammes cartésiens

X 1 X

B1 B

π1 π

f

Lemme 2.5.1. Pour tout ouvert V Ă IpXq, la catégorie MV pXq muni du foncteur d’oubli

Oubli : MV pXq Ñ AnC

est un champ.

Théorème 2.5.2 (Meersseman [74, Theorem 2.14]). Soit X une variété compacte complexe et V Ă

IpXq. Supposons qu’il existe n P N tel que pour toute structure complexe J P V , la dimension du groupe
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d’automorphisme de la variété complexe pX, Jq associée soit bornée par n. Alors, l’espace de modules de
Riemann MpXq admet une structure de champ analytique.

Remarque. Pour un exemple où la dimension des groupes d’automorphismes n’est pas bornée, le lecteur
pourra consulter le cas des surfaces de Hirzebruch [74, p. 908].

La construction de l’atlas est sensiblement la même que pour le champ analytique de Teichmüller.

Exemple des tores 2.H. Le champ

rSL2npZq ˆ Xn Ñ Hns

est le champ de modules de Riemann du tore de dimension n (voir [74]).
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INTERLUDE

La cohésion entre les deux premiers chapitres et les deux prochains n’étant pas des plus apparentes,
nous prenons le temps ici d’expliquer, comme cela à été brièvement fait dans l’introduction, pourquoi

ce changement radical intervient.
L’objet de cette thèse est donc d’étudier les déformations de la structure complexe de la variété

quotient SL2pCq{Γ, où Γ est un sous-groupe discret co-compact sans torsion, et en particulier trouver un
atlas pour le champ de Teichmüller (ou au moins pour un sous-champ de celui-ci) de ces variétés. Les
travaux [31] de Ghys ont permis d’expliciter l’espace de Kuranishi de ces variétés et l’auteur montre que
pour déformer la structure complexe il suffit de déformer une certaine pG,Xq-structure. Plus précisément,
il s’agit de la pSL2pCq ˆ SL2pCq,SL2pCqq-structure que’admettent ces quotients. Cette structure, ainsi
que ces déformations, mérite que l’on s’y attarde, et c’est exactement ce que propose le chapitre suivant.

Nous verrons au cours de ce chapitre que le principe d’Ehresmann-Thurston donne une construction
pratique des déformations de cette pG,Xq-structure au moyen de la déformation du morphisme d’holo-
nomie. Pour comprendre comment déformer ce morphisme, il est indispensable de s’intéresser à l’espace
dans lequel il vit. Cet espace est appelé variété de représentation (de Γ dans SL2pCq) et est le sujet
principal du chapitre 4.

De plus, la détermination d’un groupoïde analytique du champ de Teichmüller présuppose, comme
nous l’avons évoqué précédemment, la connaissance des espaces de Kuranishi de SL2pCq{Γ et des variétés
obtenues par déformations de la structure complexe. Nous devons pour cela montrer que la famille de
structures complexes obtenues par déformation de l’holonomie de cette pG,Xq-structure est complète
et cela nécessite que l’on regarde l’espace tangent à la variété de représentation qui s’identifie, par la
construction de Weyl, au groupe Z1pΓ, sl2pCqρq des cocycles de Γ à valeur dans sl2pCq (de Γ-module
structure induite par ρ). La variété des représentations n’étant pas lisse, nous aurons aussi besoin de
regarder les obstructions aux ordres supérieurs et il nous faudra donc considérer le second groupe de
cohomologie (de Γ dans sl2pCq). Nous aurons aussi besoin d’outils d’algèbre cohomologique pour conclure
à la complétude de cette famille et il est donc naturel de revenir sur cette théorie cohomologique dans le
même chapitre que celui de la variété de représentation.
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Chapitre 3

STRUCTURES GÉOMÉTRIQUES ET LEURS

DÉFORMATIONS

Dans le programme Erlangen [56], F. Klein proposa que les géométries classiques soient définies
par les propriétés d’un espace X invariant sous l’action transitive d’un groupe de Lie G. Motivé par

ces travaux, la notion de pG,Xq-structures fut pour la première fois introduite par Charles Ehresmann
dans le texte « Sur les espaces localement homogènes »[27]. Même si cette terminologie de pG,Xq-structure
est cependant apparue plus tard dans les travaux de Thurston, l’idée générale est la même. Si on se
donne un objet géométrique M et un G-espace homogène X, la comparaison entre la géométrie locale de
M et celle de X sous l’action d’un sous groupe de G permet d’obtenir beaucoup d’informations sur M .
Plus précisément, une pG,Xq-structure sur une variété M (de même dimension que X) est la donnée
d’un atlas sur M à valeurs dans X dont les changements de cartes sont des restrictions d’éléments de G.
Dans ce contexte, si G agit sur X en préservant une structure géométrique, alors la donnée d’une pG,Xq-
structure sur M fournit l’existence d’une structure géométrique sur M localement induite par celle sur
X. Remarquons que si X est une variété complexe et que G est un sous-groupe des biholomorphismes de
X, alors toute variété différentiable M munie d’une pG,Xq-structure est automatiquement munie d’une
structure complexe.

De façon équivalente, une pG,Xq-structure sur une variété M est entièrement déterminée par la donnée
d’une G-représentation hol du groupe fondamental de M , appelée holonomie, et d’une application dev
qui réalise un difféomorphisme local entre le revêtement universel ĂM de M et X qui est de plus hol-
équivariante, que l’on appelle application développante. Cette équivalence permet, dans bon nombre de
cas, d’apporter des éléments de réponse aux deux questions suivantes :

‚ Si M est une variété et X un G-espace homogène, peut-on trouver un espace, noté DefpG,XqpMq,
dont chaque point correspond à la donnée d’une classe d’équivalence (pour la relation d’isotopie)
de pG,Xq-structures sur M ?

‚ Sous quelles hypothèses une pG,Xq-structure sur M permet-elle d’identifier M à un quotient de X
par un sous-groupe de G ?

Une première réponse partielle à la première question est apportée par le principe d’Ehresmann-
Thruston (voir la théorème 3.2.1 ou [97]) qui affirme que si pdev,holq est une paire développante, c’est-
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à-dire la donnée d’une application développante dev et d’un morphisme d’holonomie hol, alors tout
morphisme hol1 suffisamment proche de hol est aussi l’holonomie d’une autre pG,Xq-structure. De plus,
les deux pG,Xq-structures sont isotopes si, et seulement si, ces deux morphismes sont conjugués par
un élément de G. On remarque alors que l’étude de l’espace DefpG,XqpMq est largement relié, au moins
localement, à celle de la variété de caractères Hompπ1pMq, Gq{G.

L’application développante dev, correspondant à une pG,Xq-structure sur une variété M , donne de
bons renseignements sur la deuxième question. En particulier, lorsque X est simplement connexe, si dev
est un difféomorphisme (global) alors M est difféomorphe au quotient de X par l’image de son holonomie.
Dans ce cas, cette pG,Xq-structure est dite complète. Nous profiterons de ce chapitre pour énoncer les
résultats de Tholozan concernant la complétude des pGˆG,Gq-structures. Une question naturellement
reliée à la notion de complétude de la pG,Xq-structure d’une variété M est celle d’admissibilité de l’ho-
lonomie, c’est-à-dire la propreté de l’action du groupe d’holonomie sur X. En effet, si ce groupe agit
librement et de façon totalement discontinue sur X alors on peut former le quotient et toujours sous l’hy-
pothèse de simple connexité de X, on peut montrer que ce quotient s’identifie bien à M . En particulier,
lorsque l’on cherche à savoir si un morphisme suffisamment proche de l’holonomie d’une pG,Xq-structure
complète est encore l’holonomie d’une pG,Xq-structure complète, un critère d’admissibilité peut per-
mettre de conclure. Pour aller dans ce sens, les contributions de Guéritaud et Kassel [50] et [42], qui
font suite au critère de propreté de Kobayashi et Benoist, nous permettront de justifier pleinement
l’existence de cette thèse.

Signalons aussi que si X est une variété riemannienne G-homogène (G préserve la métrique rieman-
nienne), le théorème de Hopf-Rinow assure que toutes les pG,Xq-structures sur variétés compactes sont
complètes (voir [94, Proposition 1.2]).

Dans ce chapitre, nous reviendrons donc dans un premier temps sur les concepts et définitions inhérents
aux pG,Xq-structures. Puis, nous aborderons la question de la déformation de l’holonomie, celle de
complétude d’une telle structure géométrique et nous finirons par énoncer les résultats concernant les
critères de propreté d’une action qui nous serons essentiels pour la suite.

3.1 pG, Xq-Structures

Les principales références sous-jacentes aux notions élémentaires qui suivront est [97] et [10].
Commençons par une observation qui donnera une idée de la généralisation souhaitée. Une variété est

un espace topologique localement modelé sur Rn. La définition de localement modelé dépend du contexte
mais de façon général, elle correspond à la donnée d’un ensemble G d’applications de recollement des
cartes locales de Rn. Pour que cette notion soit exploitable, il faut que cet ensemble G soit constitué
d’homéomorphismes locaux de Rn et qu’il satisfasse quelques propriétés élémentaires :

‚ G doit être stable par restriction. Si g P G alors la restriction de g à un ouvert de Rn contenu dans
le domaine de définition de g doit être dans G ,

‚ G doit être stable par passage à l’inverse. Si g est dans G , alors il en est de même pour g´1,

‚ G doit être stable par composition. Soient g1 et g2 deux éléments de G tels que g1 ˝ g2 soit bien
définit alors il doit appartenir à G ,
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‚ être dans G est une propriété locale. Si U :“
Ť

A Uα est un recouvrement d’un ouvert U et si
g : U Ñ V est un homéomorphisme local tel que chacune de ses restrictions à Uα soit dans G pour
tout α P A alors g est aussi dans G .

Ces hypothèses munissent G d’une structure de pseudo-groupe. Une variété possédant une telle structure
est appelée une G -variété.

Exemples 3.1.1.

‚ Les variétés de classe Cr (resp. C8) sont de telles variétés pour G définit comme le pseudo-groupe
des Cr-difféomorphismes (resp. C8-difféomorphismes) locaux de Rn. Lorsque r ě 1, on est ramené
à la définition usuelle de variété différentiable.

‚ Si G est un sous-groupe du groupe affine de Rn, une G -variété est généralement appelé variété
affine.

On peut aussi chercher à généraliser l’espace sur lequel les cartes sont modelées et remplacer Rn par
un espace topologique X. Par exemple en remplaçant Rn par Cn et en prenant G comme sous-groupe de
biholomorphismes locaux de Cn, on retrouve la définition usuelle de variété complexe. C’est exactement
cette généralisation que les pG,Xq-structures permettent.

Dans le cas particulier d’un groupe G agissant sur une variété différentiable X (souvent supposée
connexe), nous pouvons définir le pseudo-groupe des restrictions d’éléments de G agissant sur des ouverts
de X.

Définition 3.1.2. Soient X une variété différentiable connexe et G un sous-groupe du groupe des dif-
féomorphismes analytiques de X. On dit que G agit analytiquement si pour toute paire pg, hq d’éléments
de G telle qu’il existe un ouvert non vide U de X avec g|U “ h|U alors g “ h.

Définition 3.1.3. Soient X une variété différentiable connexe et G un sous-groupe du groupe des dif-
féomorphismes de X agissant analytiquement. Une pG,Xq-structure sur un espace topologique M est la
donnée d’un atlas pUα, ϕαqαPA avec

Ť

A Uα un recouvrement de M par des ouverts et ϕα : Uα Ñ X des
homéomorphismes sur leurs images et tel que les changement de cartes

ϕαβ :“ ϕβ ˝ ϕ´1
α : ϕαpUα X Uβq Ñ ϕβpUα X Uβq

où l’on suppose Uα X Uβ connexe, soient des restrictions d’éléments de G.
Une variété M munie d’une pG,Xq-structure sera appelée pG,Xq-variété.

Définition 3.1.4. Soient M et M 1 deux pG,Xq-variétés. Un pG,Xq-morphisme f : M Ñ M 1 est un
difféomorphisme local qui est donné dans les cartes de la pG,Xq-structure par l’action d’un élément de G.

Exemple 3.1.5. En dimension 3, Thurston conjectura que toute variété fermée de dimension 3 admette
une décomposition en sous-variétés telle que chacune d’elles admette une pG,Xq-structure parmi une liste
des 8 structures géométriques riemaniennes maximales. Parmi ces 8 structures, on peut mentionner les
suivantes :

‚ géométrie Euclidienne : X “ R3, G “ Op3q ˙ R3,

‚ géométrie Sphérique : X “ S3, G “ Op4q,
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‚ géométrie Hyperbolique : X “ H3, G “ POp3, 1q » PSL2pCq,
Voir [34, p.8] pour la liste exhaustive et détaillée.

Exemple des tores 3.I. Si X “ R2 et G :“ Op2q ˙R2 le groupe de ses isométries, une pG,Xq-structure
sur M est une structure Euclidienne. Le tore de dimension 2 vu comme quotient de R2 par Γ :“ Z2 est
un exemple de pOp2q ˙ R2,R2q-structure. Remarquons que ce n’est pas la seule structure affine que le
tore admette (voir par exemple [53, Exemple 1.1]).

Action de Z b τZ sur R2 Action par homothéties sur R2

Figure 3.1 – Deux pG,Xq-structures du tore.

3.1.1 Holonomie et application developpante

Nous supposons maintenant que l’action de G sur X est transitive.

Lemme 3.1.6. Soient M une pG,Xq-variété connexe et ĂM son revêtement universel. Alors il existe un
couple pdev,holq, où dev : ĂM Ñ X est un difféomorphisme local donné, dans les cartes, par un élément
de G et hol : π1pMq Ñ G est un morphisme de groupes tel que :

devpγ.xq “ holpγq.devpxq, @γ P π1pMq, @x P ĂM,

De plus, si pdev, hq et pdev1, h1q sont deux tels couples, alors il existe g P G tel que dev1
“ g ˝ dev et

hol1 “ ιg ˝ hol, où ιg ˝ holpγq :“ g holpγqg´1.

Démonstration. Soit ϕ1 : U1 Ă M Ñ X une carte de la pG,Xq-structure. Si ϕ2 : U2 Ñ X est une autre
carte de la pG,Xq-structure telle que U1 X U2 ‰ H est connexe alors, il existe un unique élément g P G

tel que g ˝ ϕ2 “ ϕ1 sur U1 X U2. On peut alors étendre ϕ1 en une application ϕ : U1 Y U2 Ñ X avec
ϕ “ ϕ1 sur U1 et ϕ “ g ˝ ϕ2 on U2. On peut itérer ce procédé le long de n’importe quel chemin sur M .

Le prolongement analytique ne dépendant que de la classe d’homotopie du chemin, cette construction
définit une application

dev : ĂM Ñ X

Cette application est un difféomorphisme local et satisfait la condition d’équivariance par transformations
de deck :

devpγ.xq “ hpγq.devpxq, @γ P π1pMq
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avec h : π1pMq Ñ G un morphisme.
Remarquons que si l’on change la première carte ϕ1 par g ˝ ϕ1, on définit une autre application

développante g ˝ dev et l’holonomie devient g ˝ h ˝ g´1. On peut montrer qu’une paire pdev, hq détermine
une pG,Xq-structure sur M .

X

ˆ

ĂM

ˆ
rγ

π

dev

prolongement

analytique

M

ˆ

γ

Figure 3.2 – Procédé géométrique de construction de l’application développante.

Définition 3.1.7. Dans le lemme précédent, l’application dev est appelée application développante, hol
est le morphisme d’holonomie et la paire pdev, hq est dite paire développante.

3.1.2 Relation aux G-fibrés principaux plats

Prenons une pG,Xq-variété M muni d’un atlas tUα Ñ Xu et notons gαβ les éléments de G qui cor-
respondent aux changements de cartes

ϕβ ˝ ϕ´1
α : Uα X Uβ Ñ Uα X Uβ

Nous pouvons, à partir de la donnée des gαβ , construire un fibré P Ñ M de fibre X et de groupe structural
G donné localement par les trivialisations

πα : Pα :“ Uα ˆX Ñ Uα

et dont les points pu, xq et pu, yq, avec u P Uα X Uβ et x, y P X, sont identifiés s’ils satisfont pu, yq “

pu, gαβpxqq.
De façon équivalente, si hol : π1pMq Ñ G est l’holonomie de cette pG,Xq-structure, le fibré P est
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défini par Phol :“ ĂM ˆhol X où ĂM ˆhol X est le quotient de ĂM ˆX par l’action de π1pMq donnée par

π1pMq ˆ

´

ĂM ˆX
¯

Ñ ĂM ˆX, pγ, pu, xqq ÞÑ pγ.u,holpγq.xq.

Remarque. La donnée d’une pG,Xq-structure sur une variété M nous renseigne de

‚ l’existence d’un X-fibré plat,

‚ l’existence d’une section transverse au feuilletage horizontal.

Si Y est un autre espace topologique munit d’une action de G alors, à partir d’un tel fibré P Ñ M

de fibre X, on peut construire un autre fibré P 1 Ñ M de fibre Y dont les cartes de trivialisations sont
subordonnées à celle de P Ñ M et les fonctions de transitions sont données par

ϕαβ : Uα X Uβ ˆ Y Ñ Uα X Uβ ˆ Y, pu, yq ÞÑ pu, gα,β .yq

Lorsque l’on considère Y “ G muni de l’action de G sur lui même par multiplication à gauche, on obtient
alors un G-fibré principal au dessus de M .

De plus, cette construction ne dépend que de la donnée du cocycle tgα,βu et fournit donc une construc-
tion qui descend au niveau des classes d’isomorphismes de fibrés. On pourra donc se restreindre à l’étude
des propriétés du G-fibré principal associé à la pG,Xq-structure et tirer des informations sur le fibré
construit initialement.

Définition 3.1.8. Soit M une variété. Une structure plate sur un G-fibré P Ñ M est une trivialisation
de P dont les changements de cartes sont des éléments de G. Un fibré admettant une structure plate est
dit plat.

Remarquons qu’un fibré défini par une représentation admet une structure plate provenant de la
structure plate du produit ĂMˆX et l’action du groupe fondamental par transformations de deck préserve
la platitude du fibré. La proposition suivante nous dit que cette construction est en fait une caractérisation
des fibrés plats.

Proposition 3.1.9. Soit P un G-fibré principal sur une variété connexe M . Les conditions suivantes
sont équivalentes :

‚ P admet une structure plate,

‚ P est défini par une représentation ρ : π1pMq Ñ G.

Remarque. Il existe une autre condition équivalente, l’existence d’une connexion plate sur P . Ce point
de vue ne nous sera pas utile par la suite, il est tout de même important de le mentionner ici. Voir par
exemple [58].

Démonstration. Nous avons déjà vu qu’à partir d’une représentation nous pouvons définir un fibré ad-
mettant une structure plate.

D’un autre côté, considérons la structure plate de P donnée par des trivialisations E|Uα
“ UαˆX avec

Uα P U un recouvrement d’ouverts de M et des fonctions de transisitions gαβ P G. Prenons x0 P U P U
et π1pM,x0q Q γ : r0, 1s Ñ M . Considérons aussi une subdivision 0 “ t0 ď t1 ď ¨ ¨ ¨ ď tN “ 1 de r0, 1s
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telle qu’il existe U0, U1, ¨ ¨ ¨ , UN P U avec U0 “ UN “ U et γprti, ti`1sq Ă Ui pour tout i “ 0, ¨ ¨ ¨ , N . En
posant

ρpγq :“
N
ź

i“1
gi,i´1pγptiqq

le lecteur vérifiera que l’on a bien défini une représentation.

3.2 Déformations des structures géométriques

Voici un des principes sur lesquels repose cette thèse.

Proposition 3.2.1 (Principe d’Ehresmann-Thurston, [97]). Soit M une variété compacte équipée
d’une pG,Xq-structure et hol0 son holonomie. Si hol1 est un morphisme suffisamment proche de hol alors
il existe une structure proche de la structure initiale dont l’holonomie est hol1. De plus, deux pG,Xq-
structures proches de la structure initiale sont isomorphes par un difféomorphisme proche de l’identité si
et seulement si leurs holonomies sont conjuguées par un petit élément de G.

Ici, on dit que deux morphismes d’holonomie hol et hol1 sont proches si les images d’une partie
génératrice pγ,1, ¨ ¨ ¨ , γnq de πpMq par ces deux représentations sont proches dans Gn.

Ce résultat affirme qu’en déformant le morphisme holonomie d’une pG,Xq-structure on peut obtenir
de nouvelles structures. Il dit aussi localement qu’à isotopie près, une pG,Xq-structure est complètement
déterminée par son holonomie.

3.2.1 Déformations infinitésimales de G-fibrés

La théorème 3.1.9 nous offre la possibilité de regarder les déformations infinitésimales de l’holonomie
d’une pG,Xq-structure comme déformations infinitésimales de la structure plate du G-fibré principal plat
P Ñ M associé à cette holonomie. Ceci nous servira plus tard dans la comparaison des déformations de
structures complexes au déformations de représentations.

L’idée de ce qui va suivre est d’interpréter les classes d’équivalence de déformations infinitésimales de
la structure plate d’un G-fibré principal plat en terme de cohomologie de Čech.

Fixons un G-fibré principal plat P Ñ M sur une variété M . Soit U un recouvrement de M par des
ouverts. La structure plate de P est équivalente à la donnée pour chaque paire d’ouverts pUα, Uβq d’un
élément gαβ P G, qui sont les fonctions de transitions. Elles doivent donc satisfaire les conditions de
recollement usuelles :

gαβ ˝ gβα “ Id (3.1)

gαβ ˝ gβγ ˝ gγα “ Id (3.2)

Considérons une application de changement de trivialisation, c’est à dire qui associe à chaque ouvert
Uα P U un élément hα P G. Il est facile de remarquer que la structure plate sur P Ñ M donnée par les
nouvelles fonctions de transitions g1

αβ “ hαgαβh
´1
β est équivalente à la structure plate initiale.
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Considérons une famille à un paramètre de fonctions de transitions gαβptq définissant pour tout t une
structure de fibré plat sur P Ñ M avec

9gαβ :“ d gαβptq

dt

ˇ

ˇ

ˇ

ˇ

t“0
P g

Les conditions de recollement (3.1) et (3.2) impliquent les conditions (de cocycle) suivantes :

9gαβ ` gαβ ˝ 9gβα ˝ g´1
αβ “0

9gαβ ` gαβ ˝ 9gβγ ˝ g´1
αβ ´ 9gαγ “0

Soit Uα ÞÑ hαptq avec hαp0q “ Id une famille à un paramètre de changement de trivialisation et gαβptq :“
hαptq ˝ gαβ ˝ hβptq´1 la famille (à un paramètre) de fonctions de transitions associée. La déformation
infinitésimale associée à cette famille est

9gαβ “ 9hα ´ gαβ ˝ 9hβ ˝ g´1
αβ

où 9hα :“ d hαptq

dt

ˇ

ˇ

ˇ

ˇ

t“0
P g

Pour faire correspondre les classes d’équivalence de déformations de la structure plate de P Ñ M avec
la cohomologie de Čech d’un certain faisceau, il nous faut définir ce « bon »faisceau. Pour la construction
qui suit, le lecteur pourra consulter [22, Section 14].

Si P Ñ M est un G-fibré principal et F un espace vectoriel sur lequel G agit via ρ : G Ñ AutpF q,
on peut alors définir le G-fibré FP associé à P Ñ M par FP :“ P ˆρ F “ pP ˆ F q{G où on identifie
pp ¨ g, ρpgq´1 ¨ fq et pp, fq pour tout g P G, f P F et tout p P P . En particulier, on peut considérer gP le
fibré associé à P Ñ M via l’algèbre de Lie g de G où l’action de G sur son algèbre est la représentation
adjointe Ad.

Remarque. Si G agit sur F par une représentation linéaire, le fibré associé est alors un fibré vectoriel.

Théorème 3.2.2. Soit P Ñ M un G-fibré principal plat. On défini Fg comme le faisceau des sec-
tions localement constantes du fibré associé gP . Alors, l’espace des classes d’équivalence de déformations
infinitésimales de la structure plate de P Ñ M est donné par le groupe de cohomologie H1pM,Fgq.

Nous ne démontrerons pas ce théorème, le lecteur intéressé trouvera les détails dans [55] ou [58].

3.2.2 Espace de déformation

Bien que ce ne soit pas logiquement nécessaire pour la suite, il est naturel de s’intéresser à l’espace
global des déformations d’une pG,Xq-structure sur une variété donnée M . Nous en profiterons pour
aborder les résultats récents de N. Tholozan sur cet espace de déformations des pGˆG,Gq-structures.

Nous l’avons vu plus haut, la paire développante pdev,holq ne défini une pG,Xq-structure qu’à l’action
du groupe G près, où l’action de G est donnée par

g.pdev,holq “ pg ˝ dev, ιg ˝ holq
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D’autre part, notons qu’un difféomorphisme ϕ de M se relève en un difféomorphisme rϕ de ĂM qui
est π1pMq-équivariant pour un certain automorphisme θ de π1pMq. Si on se donne une pG,Xq-structure
sur M donnée par une paire pdev,holq, alors le pull-back de cette structure le long de ϕ correspond à la
structure donnée par

ϕ˚pdev,holq :“ pdev ˝rϕ,hol ˝θq

De plus, si ce difféomorphisme est isotope à l’identité alors l’automorphisme correspondant θ est néces-
sairement le morphisme trivial.

On est donc amené à considérer l’espace de déformation suivant :

DefpG,XqpMq “ Gz

!

pdev,holq| dev : ĂM Ñ X, hol -équivariante
)

{Diff 0
pMq

Avec ces notations, on peut réécrire le principe d’Ehresmann-Thurston en disant que l’application

DefpG,XqpMq Ñ Hompπ1pMq, Gq{G, pdev,holq ÞÑ hol

est un homéomorphisme local.

3.2.3 Complétude des pG ˆ G, Gq-structures

Nous avons déjà mentionné dans l’introduction de ce chapitre l’importance de la notion de complétude
d’une pG,Xq-structure et il convient donc de revenir sur les définitions inhérentes aux concepts qui lui
sont reliés.

Définition 3.2.3. Soit M une variété munie d’une pG,Xq-structure donnée par la paire développante
pdev,holq. Si dev : ĂM Ñ X est un revêtement alors, la pG,Xq-structure est dite complète.

Dans le cas où X est simplement connexe, dev est un difféomorphisme et on peut facilement identifier
M avec X{ holpπ1pMqq, voir l’exemple des tores 3.I.

Dans le lexique de [53], si l’action de π1pMq (via hol) sur l’image U Ă X de dev est libre et totalement
discontinue alors, M s’identifie au quotient U{ holpπ1pMqq (en tant que pG,Xq-variétés) et la structure
est dite uniformisable ou Kleniéenne. Le cas complet correspond à la situation U “ X.

Remarque. Soit M une pG,Xq-variété et hol son holonomie. Si X est munit d’une métrique riemannienne
(holomorphe ou plus généralement, une structure géométrique au sens de Gromov [38]) G-invariante,
alors cette structure descend à M .

Un cas particulier de ces pG,Xq-structures qui nous intéressera plus tard est le suivant. Soit M une
variété compacte muni d’une pG ˆ G,Gq-structure où G est un groupe de Lie semi-simple de rang 1, où
le rang d’un groupe de Lie G est la dimension du tore maximal déployé de G. Pour un tel groupe G, on
peut considérer l’espace homogène G “ pGˆGq{∆G où ∆G est la diagonale. Cet espace est naturellement
muni pGˆG,Gq-structure donnée par les isométries correspondantes aux translations à droite à gauche.
Les quotients de ces espaces par un sous-groupe Γ Ă GˆG sont bien connus.

Une question naturelle est de savoir quel sous ensemble correspond aux structures complètes dans
l’espace des déformations DefpG,XqpMq.
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Théorème 3.2.4 (Tholozan [93, Théorème 3]). Soit G un groupe de Lie semi-simple de rang 1 et M
une variété compacte de même dimension que G alors le domaine des pG ˆ G,Gq-structures complètes
forme une union de composantes connexes dans DefpGˆG,GqpMq.

Pour plus de détails, voir [93, Theorem 3, p.1923].
Avec ce résultat, on sait donc que toute déformation d’une pG ˆ G,Gq-structure complète sur une

variété M restera complète. Avec le principe d’Ehresmann-Thurston, la question est donc maintenant de
savoir comment se comporte l’action de l’holonomie sur X par déformation, c’est-à-dire reste-t-elle libre
et totalement discontinue ? Lorsqu’un morphisme d’holonomie vérifiera ces deux conditions, on dira qu’il
est admissible.

Il est donc naturel de s’intéresser à l’espace des morphismes Hompπ1pMq, G ˆ Gq et de chercher un
critère d’admissibilité à l’action correspondante.

3.3 Admissibilité des représentations

Les premiers résultats concernant la caractérisation des quotients de groupes de Lie remontent à [63]
dans le contexte de quotients de PSL2pRq. Les auteurs montrent que les quotients compacts de PSL2pRq

sont donnés par le quotient de PSL2pRq par un réseau Γ agissant par

Γ ˆ PSL2pRq Ñ PSL2pRq, pγ, xq ÞÑ ρpγq´1xγ (3.3)

où ρ est une PSL2pRq-représentation de Γ.
Un peu plus tard, Kobayashi [59] généralise ce résultat aux quotients compacts de groupes de Lie

de rang 1. Ce que Kassel redémontre dans sa thèse [52] en utilisant d’autres outils (la projection de
Cartan, voir ci-dessous).

Une question assez naturelle se pose alors : étant donné une PSL2pRq-représentation ρ d’un réseau de
PSL2pRq, l’action correspondante (3.3) est-elle libre et totalement discontinue (autrement dit, le quotient
est-il une variété compacte) ? Dans ce cas, on dira que ρ est admissible.
Kulkarni et Raymond conjecturent que seules les représentations à image dans un compact sont ad-
missibles mais Goldman [32, Proposition 5] montre que ce n’est pas le cas et exhibe des représentations
suffisamment proches de la représentation triviale qui sont admissibles. Plus tard, Ghys montre le même
résultat dans le cas qui nous intéresse dans cette thèse, celui de SL2pCq (ou PSL2pCq) (voir [31] ou voir
le chapitre 5) et Kobayashi généralise au cas des groupes de Lie de rang 1.

Nous rappelons ici les résultats connus sur l’admissibilité de ces représentations.
Soient G un groupe de Lie semi-simple linéaire, connexe et non compact. Soient K un sous-groupe

compact maximal de G pour lequel on a la décomposition de Cartan : G “ KA`K où A` est une chambre
de Weyl d’un sous-groupe de Cartan A dans G. On définit alors la projection de Cartan par

µ : G Ñ A`

où µpgq est le seul de KgK XA`.
Dans notre cas, G “ SL2pCq et on peut prendre
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‚ K “ SUp2q,

‚ A le groupe des matrices diagonales de déterminant 1,

‚ A` “ tdiagpa, a´1q|a ě 1u,

Remarquons aussi que dans ce cas, nous avons l’isomorphisme

A` » R`, diagpa, a´1q ÞÑ lnpaq

donné par un caractère additif.
La projection de Cartan µpgq composée avec cet isomorphisme est alors obtenue comme la moitié du

logarithme de la plus grande valeur propre de tgg. De façon plus générale, pour tout groupe de Lie de
rang 1, cet isomorphisme est vérifié et on notera dans la suite encore par µ la composition de la projection
de Cartan et de cet isomorphisme.

Un des premiers critère d’admissibilité remonte à Kobayashi [59] et Benoist dans [8]. Ce critère
s’énonce de la façon suivante

Théorème 3.3.1 (Benoist [8]). Soient G un groupe de Lie semi-simple linéaire, connexe et non compact,
H un sous-groupe connexe réductif de G et L un sous-groupe discret de G. Comme précédemment, notons
µ : G Ñ A` la projection de Cartan de G. Alors, L agit proprement sur G{H si, et seulement si, pour
tout compact C dans A, l’ensemble µpLq X pµpHq ` Cq est borné.

Dans le cas G “ SL2pCq ˆ SL2pCq, H “ ∆SL2pCq la diagonale de SL2pCq ˆ SL2pCq et L “ pρ, iqpΓq,
avec i le plongement naturel d’un sous-groupe discret (supposé sans torsion) Γ dans SL2pCq, agissant sur
SL2pCq » SL2pCq ˆ SL2pCq{∆SL2pCq via x ÞÑ g´1xh avec pg, hq P L on retrouve un critère d’admissibilité
sur ρ.

Ce critère sera amélioré par les travaux de Kassel [52] (voir aussi [60] et [63]) .

Théorème 3.3.2 (Kassel, [51, Theorem 1.4]). Soit G un groupe de Lie semi-simple connexe de rang
1 et µ : G Ñ R` sa projection de Cartan. Soit Γ un sous-groupe discret sans torsion de G ˆ G. Alors,
l’action de Γ sur pGˆGq{∆G est propre et totalement discontinue si, et seulement si, à permutation des
facteurs près, Γ est un graphe de la forme

tpρpγq, γq, γ P Γ0u

où Γ0 est un sous-groupe discret de G et ρ P HompΓ0, Gq est tel qu’il existe λ ă 1 et C ą 0 tels que pour
tout γ P Γ0, µpρpγqq ă λµpγq ` C où µ : G Ñ R` est la projection de Cartan de G.

On peut voir la condition d’admissibilité de la façon suivante : ρ est admissible si, et seulement si,
l’ensemble pµ ˝ ρ, µqpΓq est situé sous la diagonale de R` ˆ R` et qu’il s’en éloigne à l’infini.

Définition 3.3.3. Si g est une isométrie d’un espace X, la longueur de translation associée à g, notée
λpgq est définie par

λpgq :“ inf
xPX

dpx, g.xq
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Définition 3.3.4. Soit ρ : Γ Ñ G une représentation. On définit alors le ratio des longueurs de translation
de ρ par

C 1pρq :“ sup
γPΓ

λpρpγqq

λpγq

Dans le cas où G a un rang égal à 1 (par exemple dans le cas G “ SL2pCq), on a un lien entre la
fonction λ et la fonction µ, établi dans [9] :

λpγq “ lim
mÑ8

1
m
µpγmq

et Guéritaud-Kassel montrent ensuite que la constante C 1pρq est égale à la borne inférieure des réels
C ě 0 tels que l’ensemble tµpρpγqq ´ Cµpγq, γ P Γu Ă R soit majoré.

A partir de maintenant, nous supposons que G est un groupe algébrique semi-simple connexe de rang
1 et Γ un sous-groupe discret de type fini sans torsion de G.

Finalement, en faisant agir Γ sur un arbre simplicial Kassel, relie cette constante avec une autre
constante : la constante minimale de Lipschitz.

Définition 3.3.5. Soit ρ une représentation de Γ dans G. On dira qu’une application f : H3 Ñ H3 est
pi, ρq-équivariante, où i : Γ ãÑ SL2pCq est l’inclusion naturelle, si

@γ P Γ, fpγ.xq “ ρpγq ¨ fpxq

Définition 3.3.6. Soit ρ une représentation de Γ dans G. On appelle constante de Lipschitz minimale
associée à ρ la quantité

Cpρq :“ inftLippfq|f : H3 Ñ H3, pi, ρq-équivarianteu

où Lippfq est la constante de Lipschitz, c’est-à-dire que f vérifie dpfpxq, fpyqq ď Lippfq dpx, yq pour tout
x et y dans H3 et que cette constante est la plus petite constante telle que cette inégalité est vérifiée.

Dans notre cas, cette constante est toujours finie (voir [42, Lemma 4.7]).
Dans le cas de G “ PSL2pRq, Salein [89] montre dans sa thèse que l’existence d’une application ρ-

équivariante contractante (ce qui revient à dire Cpρq ă 1) implique l’admissibilité de la représentation ρ.
Ce résultat peut-être généralisé à d’autres groupes de Lie.

On a le résultat suivant

Théorème 3.3.7 (Kassel et Guéritaud, [42, Theorem 1.8]). Les conditions suivantes sont équiva-
lentes :

1. ρ est admissible,

2. Cpρq ă 1,

3. C 1pρq ă 1,

4. il existe des constantes a ă 1 et C ą 0 telles que µpρpγqq ă aµpγq ` C.

Remarques.
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‚ La deuxième condition permet de montrer plus facilement que cette condition est une condition
ouverte (voir proposition suivante).

‚ La troisième condition permet de montrer que l’admissibilité ne dépend que du caractère de ρ.

‚ Le dernier critère présent dans ce théorème n’est pas le plus exploitable puisqu’il dépend du choix
d’une projection de Cartan.

Ces conditions sont ouvertes (voir [42]) et on obtient alors :

Proposition 3.3.8 ([41, Corollary 1.18]). Le sous-ensemble formé des représentations admissibles de Γ
dans G est un ouvert (pour la topologie standard) de HompΓ, Gq.

L’implication Cpρq ă 1 ùñ ρ admissible est un cas particulier du critère de propreté de Benoist,
lorsque cette inégalité est vérifiée, on dira que ρ est uniformément dominée par l’inclusion i [89]. L’im-
plication réciproque et l’équivalence Cpρq ă 1 ô C 1pρq ă 1 sont démontrées dans [52] dans le cas SL2pRq

et généralisées dans [42] au cas G “ IsompHnq et Γ géométriquement fini.
De plus,

Proposition 3.3.9 (Kassel et Guéritaud, [42, Proposition 1.5]). L’application

HompΓ, Gq Ñ R, ρ ÞÑ Cpρq

est continue.

Remarque. Des exemples de représentations admissibles exotiques de réseaux hyperboliques en dimension
3 et 4 ont étés construits par Lakeland et Leininger [67]. Ces constructions reposent sur l’existence
de polytopes hyperboliques dont les angles diédraux sont des angles droits.

Notons que les rappels précédents permettent d’entrevoir un lien entre l’ensemble des représentations
dominées et l’espace de Teichmüller :

Théorème 3.3.10 (Deroin et Tholozan, [95] [21]). Soit Γ le groupe fondamental d’une surface com-
pacte Σ de genre supérieur à 2 et soit ρ une représentation non fuchsienne de Γ dans un groupe de Lie de
rang 1. Alors le quotient de l’ensemble des représentations fuchsiennes qui dominent ρ par G-conjugaison
est non vide et homéomorphe à l’espace de Teichmüller de Σ.
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Chapitre 4

REPRÉSENTATIONS, CARACTÈRES ET

VARIÉTÉS ASSOCIÉES

Nous avons précédemment souligné les relations qui existent entre les pG,Xq-structures d’une
variété M et l’ensemble des représentations de son groupe fondamental π1pMq dans G (via l’holo-

nomie). Afin d’appliquer le principe d’Ehresmann-Thurston et de déformer la pG,Xq-structure au moyen
de la déformation du morphisme d’holonomie, il est donc important de s’intéresser à la géométrie de l’es-
pace des représentations. Nous verrons par exemple comment munir cet espace d’une structure d’espace
C-analytique et d’une structure de schéma.

Cet espace, appelé variété des représentations, partage aussi une relation étroite avec la cohomologie
du groupe π1pMq. Un des exemples les plus connus de ces relations est donné par la construction de Weil
qui fournit un isomorphisme entre le groupe des cocycles de π1pMq (à valeur dans l’algèbre de Lie g de
G munie de la structure de π1pMq-module induite par la représentation) et l’espace tangent (de Zariski)
à la variété des représentations. Afin d’énoncer le principal résultat de cette thèse, il est donc essentiel
dans un premier temps de revenir sur les définitions de base de la cohomologie des groupes. Puis, dans
un second temps, nous reviendrons sur la géométrie de la variété des représentations et comme annoncé,
sur les liens qu’elle partage avec cette cohomologie précédemment révisée.

Nous terminerons ce chapitre sur la notion de quotient catégorique et plus particulièrement celui
de la variété des représentations par l’action de conjugaison. Ce dernier point nous permettra, dans le
chapitre 7, de comparer ces quotients affines aux quotients champs algébriques/analytiques et d’insister
sur l’intérêt de ce langage.

4.1 Cohomologie des groupes

Un des ouvrages les plus complets sur le sujet est le livre de K. Brown [13].

4.1.1 Définition formelle

Même si la définition formelle ne nous sera pas, en tant que telle, utile plus tard, nous avons besoin
d’énoncer un résultat technique qui nécessite son apparition ici. Dans toute la suite, G désignera un

65



Chapitre 4 – Représentations, caractères et variétés associées

groupe, que l’on supposera multiplicatif.

Définition 4.1.1. Soit M un groupe abélien. Une structure de G-module sur M est la donnée d’un
morphisme σ : G Ñ AutpMq de G dans le groupe des automorphismes de M . Naturellement, un G-
module est la donnée d’une paire pM,σq.

Si il n’y a pas d’ambiguïtés, on notera simplement par g.m l’action σpgq.m.
Rappelons que le groupe abélien libre ZrGs sur G est défini comme le groupe abélien libre dont une

base est l’ensemble des éléments de G. Autrement dit, les éléments de ZrGs sont les sommes finies

ÿ

gPG

agg, ag P N

avec les ag presque tous nuls. De plus, on peut étendre la multiplication dans G à une multiplication dans
ZrGs, conférant à ce dernier une structure d’anneau, de la faon suivante :

˜

ÿ

gPG

agg

¸˜

ÿ

gPG

bgg

¸

“
ÿ

g,g1PG

agbg1gg1 “
ÿ

gPG

cgg

avec cg “
ř

hl“g ahbl “
ř

hPG ahbh´1g.
Une propriété importante de cette construction est la suivante

Proposition 4.1.2. Soit R un anneau. Une fonction f : G Ñ R telle que fpgg1q “ fpgqfpg1q et fp1q “

IdR peut être étendue de façon unique à un morphisme d’anneaux F : ZrGs Ñ R qui coïncide avec f sur
l’injection naturelle G Ñ ZrGs.

Cette propriété universelle nous dit qu’un G-module peut être vu comme ZrGs-module et réciproque-
ment.

On considère maintenant la catégorie ZrGs-mod des ZrGs-modules ainsi que le foncteur

HomZrGspZ,´q : ZrGs-mod Ñ Ab, M ÞÑ HomZrGspZ,Mq

où Ab est la catégorie des groupes abéliens et Z est le G-module trivial.
Il est bien connu que ce foncteur est exact à gauche mais ne l’est pas à droite. Et on va définir la

cohomologie de G comme les foncteurs dérivés à droite Ri du foncteur HomZrGspZ,´q, c’est-à-dire les
foncteurs Ext.

Définition 4.1.3. Soit G un groupe et M un G-module. La cohomologie de G à valeurs dans M est
définie par

HipG,Mq :“ ExtiZrGspZ,Mq

Remarquons que le foncteur HomZrGspZ,´q est identifié au foncteur p´qG des G-invariants. En effet,
puisque Z est un G-module trivial, un élément f P HomZrGspZ,Mq “ tf : Z Ñ M | fpg.aq “ g.fpaqu est
entièrement déterminé par son image sur un générateur de Z, fp1q “ m P M qui doit alors être G-
invariant. On obtient donc

HomZrGspZ,Mq » tm P M | g.m “ m, g P Gu “ MG
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Finalement, on a que HipG,´q “ Rip´qG.
Pour pouvoir travailler avec ces groupes de cohomologie, nous nous servirons d’une caractérisation

plus pratique, qui détermine ces groupes à partir d’un complexe.

4.1.2 Résolution projective et coordonnées homogènes

Pour ce faire, remarquons aussi que ExtiZrGspZ,Mq peut être obtenu soit en dérivant le foncteur
HomZrGspZ,´q et en l’appliquant à M soit en dérivant le foncteur HomZrGsp´,Mq et en lui appliquant
Z. Ainsi, le groupe HipG,Mq peut être obtenu à partir d’une résolution injective de M ou bien à partir
d’une résolution projective de Z (vu comme ZrGs-module). La deuxième résolution possède évidemment
le grand avantage de pouvoir être appliquée à tout G-module M . De plus, il existe une telle résolution
canonique. La résolution libre de ZrGs est la résolution

¨ ¨ ¨ ZrGns ¨ ¨ ¨ ZrGs Z 0∆n`1 ∆n ∆2 ∆1

où les applications ∆n sont définies par les applications ∆n de Gn dans Gn´1 de la façon suivante

p∆nqpg1, ¨ ¨ ¨ , gnq :“ g1.pg2, ¨ ¨ ¨ , gn´1q `

n´1
ÿ

i“1
p´1qipg1, ¨ ¨ ¨ , gigi`1, ¨ ¨ ¨ , gnq ` p´1qnpg1, ¨ ¨ ¨ , gn´1q

et étendues à ∆n : ZrGns Ñ ZrGn´1s par la théorème 4.1.2. Il est relativement facile de montrer que
∆n´1

˝ ∆n
“ 0.

Cette même proposition permet de voir que le complexe
´

HomZrGspZrG‚s,Mq,∆‚
¯

est isomorphe
au complexe pMappG‚,Mq, d‚q où MappGp,Mq est l’ensemble des applications de Gp dans M et la
différentielle d‚ est induite par ∆‚ via

dn : MappGn,Mq » HomZrGspZrGns,Mq HomZrGspZrGn´1s,Mq » MappGn´1,Mq
Homp∆n,Mq

Ce qui donne explicitement pour f : Gn´1 Ñ M :

pdnfqpg1, ¨ ¨ ¨ , gnq :“ fp∆pg1, ¨ ¨ ¨ , gnqq

“ g1.fpg2, ¨ ¨ ¨ , gn´1q `

n´1
ÿ

i“1
p´1qifpg1, ¨ ¨ ¨ , gigi`1, ¨ ¨ ¨ , gnq ` p´1qnfpg1, ¨ ¨ ¨ , gn´1q

On note respectivement ZnpG,Mq et BnpG,Mq l’ensemble des n-cocycles et l’ensemble des n-cobords,
respectivement définis par le noyau de dn`1 et l’image de dn. On notera également dans la suite CppG,Mq :“
MappGp,Mq.

On a, par définition,
HnpG,Mq “ ZnpG,Mq{BnpG,Mq

Exemples 4.1.4 (Cohomologie en bas degrés).

‚ En degré 0 on a

H0pG,Mq “ kerpd1 : G0 Ñ Mq “
␣

f P M | 0 “ d1fpgq “ g.f ´ f
(

“ MG
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comme annoncé précédemment.

‚ En degré 1 la condition de cocyle est la suivante

f P Z1pG,Mq ô 0 “ pd2fqpg1, g2q “ g1.fpg2q ´ fpg1g2q ` fpg1q

On appelle les morphismes qui satisfont cette condition les morphismes croisés.

Notons que la résolution libre de ZrGs et le lemme du serpent donnent conjointement la proposition
suivante

Proposition 4.1.5. Soient M1, M2 et M3 trois G-modules. Si

0 Ñ M1 Ñ M2 Ñ M3 Ñ 0

est exacte alors, pour tout entier n ě 0, il existe une application δn : HnpG,M3q Ñ Hn`1pG,M1q telle
que la suite

0 Ñ H0pG,M1q Ñ H1pG,M2q Ñ H0pG,M3q
δ0

ÝÑ H1pG,M1q Ñ H1pG,M2q Ñ H1pG,M2q
δ1

ÝÑ ¨ ¨ ¨

est exacte.

4.1.3 Suite spectrale LHS et suite inflation-restriction

Soit G un groupe, H un sous-groupe normal de G et M un G-module. Considérons la suite exacte
suivante

1 Ñ H Ñ G Ñ G{H Ñ 1

On peut facilement vérifier que prendre successivement les H-invariants puis les G{H-invariants de M
revient à en prendre directement les G-invariants. La question est de savoir comment se comporte la
composition des foncteurs dérivés Rip´qG{H ˝Rjp´qH par rapport aux foncteurs dérivés Ri`jp´qG. Nous
allons voir que cette comparaison est expliquée par la suite spectrale de Lindon-Hochschild-Serre,
cas particulier de :

Théorème 4.1.6 (Suite spectrale de Grothendieck). Soit A,B et C des catégories abéliennes 1. On
suppose qu’il existe deux foncteurs

A F
ÝÑ B G

ÝÑ C

exacts à gauche. Supposons de plus que

‚ A possède assez d’injectifs,

‚ G envoie les injectifs sur les injectifs

alors il existe une suite spectrale dans le premier quadrant (c’est-à-dire Ep,q2 “ 0 pour tout p ă 0 ou
q ă 0)

RpF ˝RqGpXq ùñ Rp`qpF ˝ GqpXq

1. Grossièrement, ce sont des catégories dans lesquelles la collection de morphismes entre deux objets admettent une
structure de groupe abélien et dans lesquelles les noyaux et conoyaux existent et sont essentiellement uniques
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pour tout X P A.

En particulier, en appliquant ce théorème à la situation précédente

ZrGs-mod ZpG{Hq-mod Abp´q
H

p´q
G{H

on obtient :

Proposition 4.1.7 (Suite spectrale de Lindon-Hochschild-Serre). Si G est un groupe, H un sous-
groupe normal de G et M un G-module. Alors, il existe une suite spectrale dans le premier cadrant

HppG{H,HqpH,Mqq ùñ Hp`qpG,Mq

De plus, à partir d’une suite spectrale donnée, nous pouvons extraire la suite des cinq-termes. Plus
précisément

Proposition 4.1.8. Si
Ep,q2 ùñ HnpXq

est une suite spectrale dans le premier quadrant alors on a la suite exacte suivante :

0 Ñ E1,0
2 Ñ H1pXq Ñ E0,1

2 Ñ E2,0
2 Ñ H2pXq. (4.1)

Démonstration. Il suffit d’écrire la page E2 de cette suite spectrale et de remarquer que par hypothèse
de convergence on a la filtration de H1 suivante

0 Ñ E0,1
2 Ñ H1pXq Ñ

´

kerE0,1
2 Ñ E2,0

2

¯

Ñ 0.

ainsi que la suite
0 Ñ E2,0

2 { ImpE0,1
2 q Ñ H2pXq.

On obtient finalement la proposition en concaténant ces deux suites.

En particulier, dans le contexte de la proposition précédente, on obtient :

Corollaire 4.1.9. Si G est un groupe, H un sous-groupe normal de G et M un G-module. Alors, on a
la suite exacte suivante, dite inflation-restriction

0 Ñ H1pG{H,MHq Ñ H1pG,Mq Ñ H1pH,MqG{H Ñ H2pG{H,MHq Ñ H2pG,Mq

4.1.4 Cup-produit

Soit G un groupe. On va maintenant définir l’application cup-produit.

Théorème 4.1.10. Pour tout couple de G-modules A et B, il existe une, et une seule, famille d’appli-
cations bi-additive

! : HrpG,Aq ˆHspG,Bq Ñ Hr`spG,AbBq

qui satisfait les conditions suivantes :
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‚ elle est fonctorielle en A et B,

‚ pour r “ s “ 0, le cup-produit est l’application induite par AG ˆBG Ñ pAbBqG,

‚ si 0 Ñ A1 Ñ A Ñ A2 Ñ 0 et 0 Ñ A1 b B Ñ A b B Ñ A2 b B Ñ 0 sont des suites exactes de
G-modules, alors pour a2 P HrpG,A2q et b P HspG,Bq on a

pδa2q ! b “ δpa2 ! bq P Hr`s`1pG,A1 bBq

où δ sont les morphismes de connexion,

‚ de la même façon, si 0 Ñ B1 Ñ B Ñ B2 Ñ 0 et 0 Ñ A b B1 Ñ A b B Ñ A b B2 Ñ 0 sont des
suites exactes de G-modules, alors pour a P HrpG,Aq and b2 P HspG,B2q :

δpa ! b2q “ p´1qra ! pδb2q P Hr`s`1pG,AbB1q

où δ sont les morphismes de connexion,

La preuve de l’existence n’est pas très instructive d’autant que les coordonnées homogènes fournissent
une expression agréable à cette famille d’applications :

! : CppG,M1q b CqpG,M2q Ñ Cp`qpG,M1 bM2q

est définie par la formule suivante, pour u P CppG,M1q et v P CqpG,M2q, on pose

u ! vpg1, ¨ ¨ ¨ , gp`qq :“ upg1, ¨ ¨ ¨ , gpq b g1 ¨ ¨ ¨ gp.vpgp`1, ¨ ¨ ¨ , gp`qq

Il est facile de vérifier qu’elle est compatible avec la différentielle, au sens où l’application descend au
quotient

! : HppG,M1q bHqpG,M2q Ñ Hp`qpG,M1 bM2q

et vérifie les propriétés du précédent théorème.
Si de plus on a une application bilinéaire b : M1 bM2 Ñ M3 compatible avec l’action de G à valeurs

dans un G-module M3, on peut composer le cup-produit avec b :

b ˝ ! : HppG,M1q bHqpG,M2q Ñ Hp`qpG,M3q

Dans le cas particulier qui nous intéressera, si Γ Ă G est un sous-groupe d’un groupe de Lie G et g son
algèbre de Lie, alors la représentation adjointe Ad défini une structure de Γ-module sur g et le crochet de
Lie r. , .s : g b g Ñ g sur g permet de définir le cup-crochet r ! s : CppΓ, gq b CqpΓ, gq Ñ Cp`qpΓ, gq par

ru ! vspγ1, ¨ ¨ ¨ , γp`qq :“ rupg1, ¨ ¨ ¨ , gpq, g1 ¨ ¨ ¨ gp.vpgp`1, ¨ ¨ ¨ , gp`qqs

On a par exemple pour p “ q “ 1

rc ! c1spγ1, γ2q “ rcpγ1q,Adγ1 c
1pγ2qs
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4.1.5 Lien avec la cohomologie de Čech

Un dernier fait dont nous aurons besoin en lien avec la cohomologie des groupes est sa correspondance
avec la cohomologie de Čech dans certains cas. En particulier, dans le cas d’un quotient X{G, il est aisé
de comparer la cohomologie de X avec celle de G comme en atteste la proposition suivante.

Proposition 4.1.11 ([79, Appendix to §2, p.22]). Soit Y “ X{G avec G un groupe discret agissant
librement et de façon totalement discontinue sur une variété différentielle X (munie de son faisceau
structural OX). Alors, pour tout faisceau F sur Y il existe

ϕpF : HppG,H0pX,π˚Fqq Ñ ȞppY,Fq

où π : X Ñ Y est la projection.
De plus, l’application ϕpF a les propriétés suivantes

1. ϕF est compatible avec le cup-produit,

2. si HipX,π˚Fq “ t0u, 1 ď i ď k alors ϕiF , 0 ď i ď k est un isomorphisme,

3. si
0 Ñ F Ñ F 1 Ñ F2 Ñ 0

et
0 Ñ Ȟ0pX,π˚Fq Ñ Ȟ0pX,π˚F 1q Ñ Ȟ0pX,π˚F2q Ñ 0

sont exactes, alors on a un morphisme entre les suites exactes longues associées H‚pG,´q et
Ȟ‚pY,´q.

Corollaire 4.1.12. Sous les hypothèses de la proposition précédente, si X est une variété de Stein et
π˚F est cohérent alors,

HppG,H0pX,π˚Fqq » ȞppY,Fq

Démonstration. Cela découle du théorème B de Cartan [15] qui affirme que si X est une variété de Stein
et F un faisceau cohérent sur X alors ȞipX,Fq “ 0 pour tout i ě 1.

Remarque. Le cas qui nous intéressera est celui des quotients SL2pCq{Γ. La proposition précédente s’ap-
plique et pour tout faisceau cohérent F sur SL2pCq{Γ on a

HppΓ, H0pSL2pCq, π˚Fqq » ȞppSL2pCq{Γ,Fq

4.2 variété des représentations

Passons maintenant à la construction des variétés de représentations, de caractères ainsi que des
schémas associés.

Dans toute la suite, nous nous restreignons au cas du groupe de Lie SL2pCq pour éviter d’alourdir
les propositions avec des hypothèses sur G. Le lecteur intéressé pourra consulter [90] ou [70] pour plus
détails.
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Définition 4.2.1. Soit Γ un groupe. On appelle variété des représentations de Γ l’ensemble HompΓ,SL2pCqq.
On le notera RpΓq.

Le terme de variété dans la définition est justifiée par la proposition suivante :

Proposition 4.2.2 (Culler et Shalen, [19]). Soit Γ un groupe finiment engendré. La variété des
représentations de Γ admet une structure d’ensemble algébrique affine.

Démonstration. Fixons une présentation xγ1, ¨ ¨ ¨ , γn|R1, ¨ ¨ ¨ , Rmy de Γ, avec n et m deux entiers (notons
que m P N Y t8u). L’espace des SL2pCq-représentation de Γ, est naturellement identifié aux n-uplets de
matrices de SL2pCq satisfaisant les relations Ri (le théorème de la base de Hilbert [46] nous permet de
remplacer l’ensemble des équations données par les relations Ri par un ensemble fini d’équations). De plus,
deux présentations différentes de Γ donnerons lieu à un isomorphisme entre les schémas correspondants.

En remarquant que SL2pCq est aussi une variété complexe, cette même construction permet d’affirmer
que RpΓq est aussi un espace C-analytique. Plus précisément, autour d’un point de pg1, ¨ ¨ ¨ , gnq P SL2pCqn,
RpΓq est donné par les fonctions holomorphes obtenues par composition de pg1, ¨ ¨ ¨ , gnq ÞÑ Ripg1, ¨ ¨ ¨ , gnq

avec les fonctions holomorphes définies dans un voisinage de Id dans SL2pCq et s’annulant en ce point.
Afin d’étudier les représentations d’un groupe Γ dans SL2pCq, il est utile d’associer à un tel groupe

une schéma algébrique affine, que l’on appellera aussi variété des représentations, tel que l’ensemble de ses
points fermés corresponde à RpΓq. Nous allons par la suite voir que ce schéma contient des informations
plus subtiles que RpΓq.

Puisque SL2pCq est un groupe algébrique d’équation ad´ bc´ 1, son anneau de coordonnées est

CrSL2pCqs “ Cra, b, c, ds{pad´ bc´ 1q

Et si Γ est un groupe de présentation finie, c’est-à-dire Γ “ FN{H où FN est le groupe libre à N éléments
et H un sous-groupe normal définissant les relations, on pose

ReppΓq :“ CrSL2pCqsbN{IH

Où IH est l’idéal définissant les relations données par H.

Définition 4.2.3. On appelle aussi variété des représentations le schéma affine RpΓq :“ SpecpReppΓqq.

Notons qu’une représentation ρ P HompΓ,SL2pCqq permet de construire l’idéal maximal des fonc-
tions qui s’annulent sur pρpγ1q, ¨ ¨ ¨ , ρpγN qq Ă SL2pCqN et donc un point fermé du schéma RpΓq. Et
réciproquement, chaque point fermé de RpΓq définit une représentation ρ : Γ Ñ SL2pCq.

On obtient finalement une application

RpΓq Ñ RpΓq

qui est l’application duale de

ReppΓq Ñ CrSL2pCqsbN{
a

IH “ CrHompΓ,SL2pCqqs
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Remarque. Kapovich et Millson [75] ont montré qu’il n’y avais pas de restrictions locales de la géo-
métrie à la variété des représentations d’un groupe fondamental de variété de dimension 3 (la géométrie
de ces variétés suit la "loi de Murphy"). Plus précisément, si X Ă CN est un schéma algébrique affine
sur Q et x P X un point rationnel alors il existe

‚ un sous-schéma ouvert X 1 Ă X contenant x,

‚ une 3-variété fermée M ,

‚ une représentation ρ P Rpπ1pMqq,

tel qu’il existe un isomorphisme de germes analytiques

f : pRpπ1pMqq, ρq Ñ pC3k ˆX 1, 0 ˆ xq

Cela étant, nous ne savons pas si ce théorème est encore valide si l’on remplace M par une 3-variété
fermée hyperbolique (confer [75, Question 8.2]).

En particulier, le schéma RpΓq peut-être non réduit (c’est-à-dire qu’il existe des éléments nilpotents
non-nuls dans ORpΓq,x pour un certain x P RpΓq) et puisque les espaces de Kuranishi (confer le chapitre 1)
peuvent être non réduits, nous devons bien considérer la variété des représentations non réduite et non
sa réduction.

Remarque. Puisque ce schéma possède deux topologies, nous prendrons la convention de parler de topo-
logie de Zariski en ajoutant le pré-fixe Zariski ou en précisant clairement lorsque cela sera nécessaire. On
parlera dans ce cas de Zariski-ouverts, Zariski-dense, espace tangent de Zariski etc.

Exemple 4.2.4. Prenons Γ “ Zr le groupe abélien libre à r générateurs γ1, ¨ ¨ ¨ , γn. Proche de la
représentation triviale ρ0 : Γ ÞÑ Id (identifiée au point pId, ¨ ¨ ¨ , Idq P SL2pCqr), toute représentation est
déterminée par un r-uplet d’exponentielles d’éléments de sl2pCq l’algèbre de Lie de SL2pCq (l’algèbre des
matrices de trace nulle). L’application exponentielle exp : sl2pCqr Ñ SL2pCqr définie une carte locale
en ce point et les relations de Γ (à savoir les relations de commutativité γiγjγ´1

i γ´1
j “ 1) définissent la

variété des représentations comme le cône dans sl2pCqr définit par

tpX1, ¨ ¨ ¨ , Xrq P sl2pCqr | rXi, Xjs “ 0, @1 ď i, j ď ru

Rappelons le fait bien connu suivant :

Lemme 4.2.5. Le groupe fondamental d’une variété compacte est de présentation finie.

Idée de démonstration. Toute variété différentielle compacte à le type d’homotopie d’un CW -complexe
fini. Par le théorème de Van Kampen, le groupe fondamental d’un CW -complexe fini est de présentation
finie.

Définition 4.2.6. Soit M une variété différentiable. On appelle variété des représentations de M le
schéma affine Rpπ1pMqq.

Le résultat précédent affirme en particulier que la variété des représentations de M pour toute variété
admet une structure d’espace C-analytique.
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4.2.1 Construction de Weil et espaces tangents

Pour le reste de cette section, fixons Γ un groupe finiment présenté et

xγ1, ¨ ¨ ¨ , γn|R1, ¨ ¨ ¨ , Rmy

une présentation de Γ.

Nous rappelons maintenant la construction de l’espace tangent donnée par Weil. Soit ρt un chemin
(supposé de classe C8) de représentations émanant de ρ P RpΓq. Posons

cpγq :“ d ρtpγq

dt

ˇ

ˇ

ˇ

ˇ

t“0
ρpγq´1

On a alors

cpγγ1q “
d ρtpγγ

1q

dt

ˇ

ˇ

ˇ

ˇ

t“0
ρpγγ1q´1

“
d

dt

`

ρtpγqρtpγ
1q
˘

ρpγ1q´1ρpγq´1
ˇ

ˇ

ˇ

ˇ

t“0

“
d

dt

`

ρtpγqρpγq´1˘`ρpγqρtpγ
1qρpγ1q´1ρpγq´1˘

ˇ

ˇ

ˇ

ˇ

t“0

“ cpγq ` Adρpγq cpγ
1q.

On obtient alors c P Z1pΓ, sl2pCqρq

Réciproquement, si c P Z1pΓ, sl2pCqρq, on définit htpγq “ etcpγqρpγq et on a que

htpγqhtpγ
1q “ etcpγqρpγqetcpγ1

qρpγ1q

“ etcpγqρpγqρpγ´1qρpγqetcpγ1
qρpγ´1qρpγqρpγ1q

“ etcpγqetρpγqcpγ1
qρpγ´1

qρpγγ1q

“ etcpγγ1
qρpγγ1q ` optq

“ htpγγ
1q ` optq

Autrement dit, ht est une représentation qui vérifie la condition pour être un morphisme à l’ordre 1.
Cette construction nous amène au résultat suivant :

Théorème 4.2.7 ([70, Proposition 2.2]). L’application

TZarρ RpΓq Ñ Z1pΓ, sl2pCqρq

construite précédemment, est un isomorphisme et l’inclusion I Ă
?
I induit une injection

TZarρ RpΓqred ãÑ Z1pΓ, sl2pCqρq
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où RpΓqred est la réduction du schéma affine RpΓq et I l’idéal définissant la variété RpΓq.

De plus, si ρt est donné par la conjugaison de ρ par un chemin de matrices At tel que A0 “ Id alors
le cocycle formé est un cobord donné par γ ÞÑ X ´ Adρpγq X où X “ dAt

dt

ˇ

ˇ

t“0. Si on note Oρ l’orbite
de ρ par conjugaison, l’inclusion TρOρ ãÑ TρRpΓq correspond, via l’isomorphisme construit plus haut, à
l’inclusion B1pΓ, sl2pCqρq ãÑ Z1pΓ, sl2pCqρq.

Remarque. Pour un exemple ou l’inclusion TZarρ RpΓqred ãÑ Z1pΓ, sl2pCqρq être stricte le lecteur peut
consulter [44, Example 2.18].

Exemple 4.2.8. Reprenons l’exemple précédent de Γ “ Zr. L’espace tangent de RpΓq au point de la
représentation triviale n’est pas difficile à expliciter. En effet, la structure de Γ-module de sl2pCq donnée
par Adρ0 est triviale.

On a donc l’isomorphisme canonique suivant Z1pΓ, slρ0
2 q » Z1pΓ,Cq b sl2pCq. On a évidemment

B1pΓ, slρ0
2 q “ 0 et on en déduit

H1pΓ, slρ0
2 q “ Z1pΓ,Cq b sl2pCq “ HompFr,Cq b sl2pCq » Cr b sl2pCq

4.2.2 Déformations de représentations

Nous voulons construire dans cette section des déformations infinitésimales de représentations. Cette
section est essentiellement tirée de [45]

Définition 4.2.9. Soit ρ P RpΓq. Une déformation formelle de ρ est un morphisme

ρ8 : Γ Ñ SL2pCrrtssq

tel que ρ8|t“0 “ ρ.

Il est bien connu qu’une telle déformation peut s’écrire sous la forme

ρ8 : γ ÞÑ exp
˜

8
ÿ

i“1
ticipγq

¸

ρpγq

avec tciu Ă C1pΓ, sl2pCqρq.
Étant donné n-cochaines ci P C1pΓ, sl2pCqρq, i “ 1, ¨ ¨ ¨ , n on note ρtc1,¨¨¨ ,cnu l’application

ρtc1,¨¨¨ ,cnu : Γ Ñ SL2pCrtsq, γ ÞÑ exp
˜

n
ÿ

i“1
ticipγq

¸

ρpγq

Définition 4.2.10. Soient des cochaines ci P C1pΓ, sl2pCqρq, i “ 1, ¨ ¨ ¨ , n. On dit que ρtc1,¨¨¨ ,cnu vérifie
la condition d’homomorphie à l’ordre k, k ď n si

pk ˝ ρtc1,¨¨¨ ,cnu P HompΓ,SL2pCrts{ptk`1qqq

où pk : SL2pCrtsq Ñ SL2pCrts{ptk`1qq est l’application induite par la projection Crts Ñ Crts{ptk`1q.
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Supposons que pour des cochaines ci, ρn :“ ρtc1,¨¨¨ ,cnu vérifie la condition d’homomorphie à l’ordre
n. Nous voulons construire l’obstruction à éteisomorpndre cette application à l’ordre n ` 1, c’est à dire
l’obstruction à l’existence d’une cochaine cn`1 P C1pΓ, sl2pCqρq telle que ρtc1,¨¨¨ ,cn`1u vérifie la condition
d’homomorphie à l’ordre n ` 1. Cette construction à été faite dans [45] en suivant les idées de Douady
que nous reverrons dans leurs contexte original au chapitre suivant.

Une application ρn :“ ρtc1,¨¨¨ ,cnu qui vérifie la condition d’homomorphie à l’ordre k, k ď n, permet de
définir une structure de Γ-module sur le groupe abélien sl2pCrts{ptk`1qq via la représentation adjointe de
pk ˝ ρn. Nous noterons gρn

k cette algèbre muni de cette structure.

Lemme 4.2.11 ([45]). Soient des cochaines ci P C1pΓ, sl2pCqρq, i “ 1, ¨ ¨ ¨ , n. Pour tout 1 ď k ď n,
l’application ρn :“ ρtc1,¨¨¨ ,cnu vérifie la condition d’homomorphie à l’ordre k si, et seulement si, Cnk :“

pk ˝
d ρn
dt

ρ´1
n P C1pΓ, gρn

k´1q vérifie la condition de cocycle.

Démonstration. Supposons que ρn soit un morphisme à l’ordre k. Alors

ρnpγγ1q ” ρnpγqρnpγ1q mod tk`1

en appliquant d
dt , on a

d ρn
dt

pγγ1q ”
d ρn
dt

pγqρnpγ1q ` ρnpγq
d ρn
dt

pγ1q mod tk

Ce que l’on peut réécrire

d ρn
dt

pγγ1qρnpγγ1q´1 ”
d ρn
dt

pγqρnpγq´1 ` Adρnpγq

ˆ

d ρn
dt

pγ1qρnpγ1q´1
˙

mod tk

Et finalement, on a :
Cnk´1pγγ1q “ Cnk´1pγq ` Adpk´1˝ρnpγq

`

Cnk´1pγ1q
˘

D’un autre côté, si Cnk est un cocycle, en faisant le calcul précédent dans l’autre sens, on voit que
à l’ordre k, pour tout γ, γ1 P Γ, ρnpγqρnpγ1q et ρnpγγ1q diffère d’une constante C P sl2pCq mais cette
différence est nulle pour γ “ γ1 “ Id. On retrouve donc bien la condition d’homomorphie à l’ordre k.

La suite exacte
0 Ñ C Ñ Crts{ptnq Ñ Crts{ptn´1q Ñ 0

induit la suite de Γ-module suivante :

0 Ñ sl2pCqρ Ñ gρn
n Ñ gρn

n´1 Ñ 0

On obtient la suite exacte suivante, tirée de la suite exacte longue associée en cohomologie :

H1pΓ, sl2pCqρq Ñ H1pΓ, gρn
n q

Čpn´1
ÝÑ H1pΓ, gρn

n´1q
δn

Ñ H2pΓ, sl2pCqρq (4.2)

où δn est l’application connectante décrite dans la théorème 4.1.5.

76
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Comme précédemment, considérons n cochaines ci P C1pΓ, sl2pCqρq, i “ 1, ¨ ¨ ¨ , n et Cnk :“ pk ˝

d ρn
dt

ρ´1
n . Supposons que ρn soit un morphisme jusqu’à l’ordre n, alors par le lemme précédent, Cnn est

un élément de H1pΓ, gρn

n´1q. Par exactitude de la suite (4.2), si la classe représentée par δnpCnn q est nulle,
alors il existe un élément ĆCnn`1 dans Z1pΓ, gρn

n q tel que Cnn “ pn

´

ĆCnn`1

¯

. Ou, de façon équivalente, il
existe une cochaine cn`1 telle que ρn`1 :“ ρc1,¨¨¨ ,cn`1 soit un morphisme à l’ordre n` 1.

Nous pouvons résumer cette construction dans la proposition suivante

Proposition 4.2.12 ([45]). Soient des cochaines ci P C1pΓ, sl2pCqρq, i “ 1, ¨ ¨ ¨ , n telles que ρtc1,¨¨¨ ,cnu

soit un morphisme à l’ordre n et soit Cnn “ pn ˝
d ρn
dt

ρ´1
n . Alors, il existe une cochaine cn`1 telle que

ρtc1,¨¨¨ ,cn`1u soit un morphisme à l’ordre n` 1 si, et seulement si, δnCnn “ 0 P H2pΓ, sl2pCqρq.

Exemple 4.2.13. Si c1 est un cocycle et ρc1 l’application associée qui vérifie la condition de morphisme
à l’ordre 1. Supposons que l’élément C1

1 “ p1 ˝
d ρ1

dt
ρ´1

1 “ c1 soit envoyé sur 0 par δ1 : H1pΓ, sl2pCqρq Ñ

H2pΓ, sl2pCqρq alors il existe ĂC2
1 “ c1 ` 2tc2 P Z1pΓ, gρ1

1 q avec c2 P C1pΓ, sl2pCqρq. Autrement dit,

c1pγγ1q ` 2tc2pγγ1q “ c1pγq ` 2tc2pγq ` Adρc1 pγq

`

c1pγ1q ` 2tc2pγ1q
˘

En développant à l’ordre 1 l’exponentielle dans l’expression ρc1 pγq “ expptc1pγqqρpγq “ pId `tc1pγqqρpγq

et en regroupant les termes par degrés, on obtient la condition de cocycle de c1 en degré 0 et on obtient
en degré 1 :

2c2pγq ´ 2c2pγγ1q ` Adρpγqp2c2pγ1qq “ ´c1pγqρpγqc1pγ1qρpγq´1 ` ρpγqc1pγ1qρpγq´1c1pγq
loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

´rc1!c1spγ,γ1q

On reconnaît alors dc2pγ, γ1q “ ´
1
2 rc1 ! c1spγ, γ1q.

On peut évidemment continuer les calculs aux ordres supérieurs avec la formule de Campbell-Hausdorff,
voir par exemple [1].

4.3 Variété de caractères

Comme nous l’avons dit dans l’introduction, nous allons construire dans cette thèse le champ de
caractères (voir le chapitre 2 et le chapitre 7). Cette construction n’aurait pas d’intérêt si le bénéfice de
la vision champêtre par rapport à la construction standard de la variété de caractères (issue de la théorie
des invariants géométriques) n’était pas important. Nous avons donc besoin de justifier ce choix et de
comparer les deux constructions. Cette section reprend les bases de la théorie des invariants géométriques
et en particulier de la construction de la variété de caractères.

Avant de donner la construction de cette variété, nous revenons sur les définitions inhérentes à la
théorie des invariants géométriques et donnons quelques exemples qui permettent de motiver cette théorie.

Le lecteur intéressé pourra consulter [80] ou [83].
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4.3.1 Quotients géométriques et catégoriques

Définition 4.3.1. Soit X une variété algébrique muni d’une G-action, où G est un groupe algébrique.
Un quotient catégorique de X par G est une paire pY, ϕq, où Y est une variété et ϕ : X Ñ Y est un
morphisme G-invariant tel que pour tout autre morphisme G-invariant f : X Ñ Z, il existe un unique
morphisme ψ : Y Ñ Z tel que f “ ψ ˝ ϕ.

De plus, si ϕ´1pyq est une orbite pour tout y P Y , on dit que pY, ϕq est un espace d’orbites.

Remarque. Un quotient catégorique n’est défini qu’à isomorphisme près.

Voici un exemple qui peut servir de motivation à l’utilisation des champs (confer chapitre 7).

Exemple 4.3.2. Soit k un corps, que nous supposerons de caractéristique 0. Considérons l’action de
GLnpkq sur Mnpkq par conjugaison. Nous affirmons que la paire pkn, χq avec χ : Mnpkq Ñ kn donné par
le polynôme caractéristique est un quotient catégorique.

Faisons-le pour n “ 2, k “ C, les autres cas n’étant pas beaucoup plus difficiles. Soit

f : M2pCq Ñ Z

un morphisme GL2pCq-invariant. Puisqu’il est constant le long de chaque orbite, on peut considérer la
forme de Jordan pour distinguer les orbites et on obtient trois types :

˜

α 0
0 β

¸ ˜

α 0
0 α

¸ ˜

α 1
0 α

¸

Mais les matrices
˜

α 1
0 α

¸ ˜

α 0
0 α

¸

ont le même polynôme caractéristique. Si on considère

Bt :“
˜

t 0
0 t´1

¸˜

α 1
0 α

¸˜

t´1 0
0 t

¸

“

˜

α t2

0 α

¸

on obtient que fpBtq “ fpB1q pour tout t ‰ 0 et donc inévitablement, aussi pour t “ 0.
Considérons le morphisme p : C2 Q v Ñ Cv P M2pCq qui associe à un vecteur v la matrice compagnion

associée, on peut construire l’application

ψ : C2 Ñ Z, v ÞÑ fpCvq

qui vérifie bien les propriétés d’un quotient catégorique.

Remarque. Le quotient catégorique pkn, χq n’est pas un espace d’orbites. En effet, on a χpIdq “ p´2, 1q

et χ´1pp´2, 1qq “ OId Y OI où I “

˜

1 1
0 1

¸

.

Définition 4.3.3. Soit X une G-variété, c’est à dire une variété muni d’une G-action. Un bon quotient
de X par G est une paire pY, ϕq, avec Y une variété et ϕ : X Ñ Y un morphisme surjectif G-invariant tel
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que

‚ si U est un ouvert de Y , alors
ϕ˚OpUq Ñ Opϕ´1pUqq

est un isomorphisme sur Opϕ´1pUqqG,

‚ si W est fermé, alors ϕpW q est fermé,

‚ si W1, W2 sont des fermés disjoints de X alors ϕpW1q X ϕpW2q “ H.

où les fermés (resp. ouverts) sont des fermés (resp. ouverts) pour la topologie de Zariski.
De plus, si pY, ϕq est un espace d’orbites, alors on dit que c’est un quotient géométrique.

Remarque. Les concepts de bons quotients (resp. quotients géométriques) pY, ϕq sont locaux par rapport
à Y dans le sens où

‚ si U est ouvert dans Y alors pU, ϕq est un bon quotient (resp. quotient géométrique) pour ϕ´1pUq,

‚ si tUiu est un recouvrement de Y par des ouverts tels que pUi, ϕq est un bon quotient (resp. quotient
géométrique) de ϕ´1pUiq, alors pY, ϕq est un bon quotient (resp. quotient géométrique) de X.

Proposition 4.3.4. Un bon quotient est un quotient catégorique.

Exemple 4.3.5. Pour la GL2pCq-variété M2pCq, le quotient catégorique n’est pas un bon quotient

puisque det n’est pas fermée. En effet, considérons le sous-espace des matrices Mt :“
˜

t 0
0 1

t2

¸

, il est

clairement fermé puisque }Mt} “

$

&

%

|t| si |t| ě 1
ˇ

ˇ

1
t2

ˇ

ˇ , si |t| ď 1
, mais detptMt | t P C˚uq “s0,`8r.

4.3.2 Quotients affines

Soit X est une G-variété affine. On aimerait avoir un quotient catégorique pY, ϕq de X par G avec Y
affine. Remarquons que pour un quotient catégorique pY, ϕq, tout morphisme G-invariant f : X Ñ k se
factorise via ϕ. En termes algébriques, cela signifie que

ϕ˚ : OpY q Ñ OpXq

est un isomorphisme sur les G-invariants OpXqG. Ainsi, Y est affine si, et seulement si, OpXqG est
finiment engendrée. La question de savoir si OpXqG est finiment engendré dès lors que OpXq l’est est
une version du 14ème problème de Hilbert. un peu plus tard, Nagata donna un contre-exemple et une
condition suffisante sur G à ce problème.

Définition 4.3.6. Soit k un corps. Un groupe algébrique G est géométriquement réductif si étant donné
une représentation rationnelle (c’est à dire une représentation G Ñ GLnpkq) de dimension finie V de G
et un vecteur invariant v P V il existe un polynôme homogène G, f : V Ñ k tel que fpvq “ 1.

Proposition 4.3.7. Si charpkq “ 0, alors

‚ tout groupe fini est géométriquement réductif,
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‚ SLnpkq, GLnpkq sont géométriquements réductifs.

Définition 4.3.8. Soit G un groupe algébrique et R une k-algèbre. Une action rationnelle de G sur R
est une application R ˆG Ñ R telle que

‚ pgg1q.f “ g1.pg.fq et e.f “ f ,

‚ f Ñ g.f est automorphisme de la k-algèbre R,

‚ tout élément de R est contenu dans un sous-espace fini-dimensionel G-invariant sur lequel G agit
par une représentation rationnelle.

Théorème 4.3.9. Nagata Soit G un groupe algébrique géométriquement réductif agissant via une re-
présentation rationnelle sur une k-algèbre R finiment engendrée, alors RG est aussi finiment engendrée.

Voir [83], par exemple, pour la preuve.

Remarque. En caractéristique 0, la notion usuelle de groupe réductif (c’est à dire, avec radical unipotent
trivial) est équivalent à celle d’être géométriquement réductif. Comme nous restons dans ce contexte,
nous enlevons le terme "géométriquement".

Théorème 4.3.10. Soit X une G-variété affine avec G un groupe réductif. Alors, il existe un bon quotient
pY, ϕq avec Y affine.

Par le théorème de Nagata, nous savons que OpXqG est finiment engendré et il vient que SpmpOpXqGq

est une variété affine.

Définition 4.3.11. Soient X une G-variété affine et G un groupe réductif. On appelle quotient GIT de
X par G, la variété Spec

`

krXsG
˘

et on la note X{{G.

Proposition 4.3.12. Soit X une G-variété et pY, ϕq un bon quotient. Alors,

‚ ϕpx1q “ ϕpx2q ô Ox1 X Ox2 ‰ H,

‚ si la G-action sur X est fermée, c’est à dire que toutes les orbites sont fermées, alors pY, ϕq est un
quotient géométrique.

Remarque. Le lecteur familier de la théorie des invariants géométriques de Mumford notera que nous
n’aurons pas besoin de la notion de stabilité (resp. semi-stabilité, instabilité) puisque dans la suite, nous
travaillerons avec SL2pCq (un groupe semi-simple) agissant sur la variété des représentations (une variété
affine) dont tous les points seront semi-stables.

4.3.3 Quotient de la variété des représentations

Appliquons les constructions des paragraphes précédents au cas de l’action par conjugaison sur la
variété des représentations. Le théorème 4.3.10 permet d’affirmer l’existence d’une variété algébrique
affine qui est un bon quotient (munie de l’application naturellement associée à sa construction) pour
l’action de SL2pCq sur RpΓq.

Pour simplifier les notations, cette section se restreint au cas où le groupe réductif G de la section
précédente est SL2pCq. Le lecteur adaptera facilement les définitions/résultats dans un contexte plus
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général. Voici quelques bonnes références au sujet introduit dans cette section : [90], [19], [70] ou encore
[69].

Soit Γ un groupe finiment engendré. On définit l’algèbre ApΓq par

ApΓq :“ CrXγ
i,j , γ P Γ, i, j P t1, 2us{pdetXγ ´ 1, XγXδ ´Xγδ, avec γ, δ P Γq

où Xγ est la matrice pXγ
i,jqi,j . Notons que l’on a SpecpApΓqq “ RpΓq.

On note traditionnellement X pΓq le quotient RpΓq{{ SL2pCq définit par le spectre des SL2pCq-invariants
de ApΓq, c’est-à-dire SpecpApΓqSL2pCqq “ RpΓq{{ SL2pCq. On a alors le résultat suivant (voir [71] par
exemple).

Théorème 4.3.13. Les ensembles suivants sont en bijection :

‚ les points fermés de X pΓq,

‚ les SL2pCq-orbites fermées de RpΓq.

Justifions succinctement le nom de variété de caractères.

Définition 4.3.14. Soit Γ un groupe finiment engendré. Un SL2pCq-caractère de Γ est la trace d’une
SL2pCq-représentation :

Γ ρ
ÝÑ SL2pCq

Tr
ÝÑ C

On note χρ le caractère de Γ associé à la représentation ρ et ChpΓq l’ensemble des caractères de Γ.

Notons BpΓq la sous-algèbre de ApΓq engendrée par les fonctions linéaires

Γ Ñ C, γ ÞÑ TrpXγq

Proposition 4.3.15 ([69, Propositions 1 and 3]). On a les isomorphismes suivants :

BpΓq » ApΓqSL2pCq

et
ChpΓq » SpecpBpΓqq

où l’isomorphisme est induit par l’application qui envoie χρ sur τρpγq “ χρpγq.

Dont on déduit immédiatement.

Corollaire 4.3.16. On a l’isomorphisme suivant :

ChpΓq » X pΓq

Remarque. Même si ce n’est pas logiquement nécessaire pour la suite, on peut introduire l’algèbre de
Skein.

Considérons l’algèbre

SpΓq :“ CrXγ , γ P Ss{pXId ´ 2, Xγδ `XγXδ´1 ´XγXδq, avec γ, δ P Sq
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où S est une partie (finie) génératrice de Γ. Il découle de la célèbre relation

TrpABq ` TrpAB´1q “ TrpAq TrpBq, @A,B P SL2pCq

un isomorphisme entre ApΓq et SpΓq.

Exemple 4.3.17. Reprenons l’exemple de Γ “ Z. Considérons G un groupe réductif, T un tore maximal
de G et W le groupe de Weyl de G. On a [91, Corollaire 6.4]

T{W Ñ XGpZq

est un isomorphisme.
Dans le cas de G “ SL2pCq, on se retrouve dans une version légèrement adaptée de l’théorème 4.3.2.

À conjugaison près, un tore maximal de SL2pCq est donné par

T “

#˜

z 0
0 z´1

¸
ˇ

ˇ

ˇ

ˇ

ˇ

z P C˚

+

et le groupe de Weyl W dans SL2pCq de ce tore est donné par le quotient du normalisateur de T dans
SL2pCq par T. On obtient après calcul que le groupe de Weyl est le sous-groupe (isomorphe à Z{2Z) de

SL2pCq obtenu comme quotient du groupe engendré par
˜

0 ´1
1 0

¸

par le centre de SL2pCq. Le groupe

de Weyl agit sur T en permutant les valeurs sur la diagonale. On obtient finalement que

C˚{ „» X pZq

où z „ z´1. L’isomorphisme est naturellement donné par z Ñ τρ avec τρp1q “ z ` z´1.

On rappelle qu’un sous-groupe H d’un groupe G est dit complètement réductible si pour tout groupe
parabolique P Ă G contenant H il existe un groupe de Levi L Ă P contenant H. Lorsque G est un groupe
réductif, on a [90, Proposition 8] que H est un sous groupe complètement réductif dans G si, et seulement
si, sa clôture de Zariski est un sous-groupe linéaire réductif. On dira par la suite qu’une représentation
est complètement réductible si son image est un sous-groupe complètement réductible de G.

Pour caractériser le lieu poly-stable, on peut utiliser le théorème suivant :

Théorème 4.3.18 (Sikora, [90, Theorem 30]). Soit ρ P RpΓq. Alors Opρq est fermée si, et seulement
si, ρ est complètement réductible.

Exemple 4.3.19. Dans l’exemple précédent, puisque toutes les représentations sont abéliennes, toutes
ont un stabilisateur de dimension au moins 1 et aucun point n’est stable au sens de [80]. Prenons l’exemple
du groupe libre à deux éléments F2. Il est connu, par un théorème de Fricke (voir [90] par exemple),
que la variété de caractères X pF2q est isomorphe à C3 via l’application suivante :

pA,Bq P SL2pCq ˆ SL2pCq » HompF2,SL2pCqq ÞÑ pTrpAq,TrpBq,TrpABqq P C3
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De manière plus générale, on peut montrer par exemple que X pFrq est une variété, où Fr est le groupe
libre à r éléments.

Les variétés de représentations et de caractères ont été largement étudiées, en particulier, voici quelques
références sur les propriétés algébriques de celles-ci. [69], [68], [70], [47], [36], [14], [90].

Ces variétés apparaissent, comme nous le verrons dans cette thèse (confer chapitre 7), dans de nom-
breux problèmes de modules de structures géométriques ainsi que dans des problèmes de modules de
connections plates, ou des fibrés de Higgs. Le cas des structures hyperboliques sur les surfaces a notam-
ment été traité, entre autre, dans [34], [35], [33], [49], [39].

Pour un aperçu plus complet de l’étendue des travaux dans d’autres domaines, voir [90, §11. Character
varieties].

Remarque. A notre connaissance, le lien entre variété de caractères et sa version champêtre n’est pas
encore bien documenté. On peut cependant citer [98] concernant les "derived character varieties".
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Chapitre 5

STRUCTURES COMPLEXES DES ESPACES

HOMOGÈNES DE SL2pCq

Nous abordons maintenant le principal sujet de cette thèse, celui des déformations de struc-
tures complexes des quotients compacts de SL2pCq par des sous-groupes discrets. Nous l’avons

mentionné dans l’introduction, ce sont les travaux de Ghys [31] qui ont, entre autre, permis d’explici-
ter les espaces de Kuranishi de ces quotients. Le principal objectif de ce chapitre est donc de revenir
sur les résultats de cet article. En particulier, nous verrons comment l’auteur compare les déforma-
tions de la pSL2pCq ˆ SL2pCq,SL2pCqq-structure naturelle des quotients SL2pCq{Γ en utilisant le principe
d’Ehresmann-Thruston avec les déformations de la structure complexe de ce quotient. Nous reviendrons
dans le même temps sur les théorèmes de rigidité de Weil et de Mostow qui caractérisent l’holonomie de
la pG,Xq-structure sur SL2pCq{Γ. Nous profiterons de ce chapitre pour discuter du premier nombre de
Betti de Γ qui permet de donner des renseignements sur la « complexité »de la variété des représentations.

Nous donnerons dans une deuxième partie les calculs de certains groupes d’automorphismes des va-
riétés obtenues par déformation de SL2pCq{Γ. En particulier, nous aurons besoin du calcul du groupe
Aut1

pSL2pCq{Γq (défini dans le chapitre 2) correspondant au groupe d’isotropie dans le champ de Teichmül-
ler.

Avant de revenir sur les résultats soulignés dans cette introduction et qui motivent cette thèse, nous
donnons rapidement le lien entre ces quotients et les variétés hyperboliques de dimension 3. Cette relation
a des intérêts multiples :

‚ elle nous renseigne sur la géométrie des quotients SL2pCq{Γ,

‚ elle justifie l’intérêt de ces travaux par l’abondance d’exemples grâce au théorème d’hyperbolisation
de Thurston [96],

‚ la cohomologie des quotients SL2pCq{Γ est largement liée à celle de H3{Γ.

Elle permet en outre de justifier pleinement le nom donné à cette thèse.
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5.1 Variété hyperbolique de dimension 3 et son fibré de repères

On rappelle que H3 est l’espace hyperbolique définit par

H3 :“ tpz, tq P C ˆ R| t ą 0u

muni de la métrique de Poincaré. Son bord BH3 “ tt “ 0uYt8u s’identifie à la sphère de Riemann CYt8u.
L’action du groupe PSL2pCq sur la sphère de Riemann par transformations de Möbius s’étend continûment
en une action sur H3 de la façon suivante. Les transformations normales sont des cas particulier de
transformations de Mobiüs et sont données par

m1 : z ÞÑ z ` 1, et mk : z ÞÑ kz, 1 ‰ k P C

Toute transformation de Mobiüs est conjuguée à une transformation normale et on peut donc se res-
treindre à étendre ces dernières, ce que l’on fait en posant

f1 : pz, tq ÞÑ pm1pzq, tq, et fk : pz, tq ÞÑ pmkpzq, |k|tq

De plus cette construction d’isométries de H3 donne une bijection entre Isom`pH3q et PSL2pCq. Pour
obtenir le groupe IsompH3q tout entier, il faut aussi considérer l’isométrie induite par l’isométrie z ÞÑ z

du bord de H3 qui renverse l’orientation.
Soit M une variété et π : E Ñ M un fibré vectoriel de rang n. Au dessus de chaque point x P M ,

on note GLpExq l’ensemble des bases ordonnées de Ex :“ π´1pxq. L’ensemble GLpEq :“
ğ

xPM

GLpExq est

donc l’ensemble des couples px,Bq avec x P M et B P GLpExq et est donc muni d’une projection naturelle

π1 : GLpEq Ñ M, px,Bq ÞÑ x

De plus, si ϕ : π´1pUq Ñ U ˆ Rn est une trivialisation locale de E alors,

ψ : π1´1pUq Ñ U Ñ U ˆ GLnpRq, px,Bq ÞÑ px, ϕpb1q, ¨ ¨ ¨ , ϕpbnqq

où B “ tb1, ¨ ¨ ¨ , bnu, est une trivialisation de GLpEq. On remarque que pour tout x P M , GLnpRq agit
sur GLpExq par multiplication à gauche de façon libre et transitive. Ainsi, GLpEq est un GLnpRq-fibré
principal.

Définition 5.1.1. Soit M une variété et π : E Ñ M un fibré vectoriel de rang n. Le fibré GLpEq Ñ M

est appelé fibré des repères de E.

De la même façon, si E Ñ M est un fibré vectoriel de rang fini muni d’une métrique, c’est-à-dire muni
d’une application

k : E ˆM E Ñ M ˆ R

tel que sa restriction en chaque fibre soit une application bilinéaire non-dégénérée, on pose OpExq l’en-
semble des bases orthonormés pour k|π´1pxq et on peut définir π1 : OpEq :“

ğ

xPM

OpExq Ñ M le fibré des
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repères orthonormés de E. De la même façon, on peut que pour le fibré des repères, on peut trouver une
trivialisation de ce fibré.

Si de plus, le fibré E Ñ M est orienté, on peut encore considéré le fibré SOpEq :“
ğ

xPM

SOpExq Ñ

M , où SOpExq est l’ensemble des bases orthonormées directes de Ex. On l’appelle le fibré des repères
orthonormés directs de E.

Remarquons que les fibrés SOpEq et OpEq ne dépendent que (à isomorphisme près) de la signature
pp, qq (avec p` q “ rkpEq) de la métrique k.

Définition 5.1.2. Soit M un variété riemannienne. On appelle fibré des repères (resp. fibré des repères
orthonormés de M) le fibré GLpMq (resp. OpMq) des repères de TM (resp. fibré des repères orthonormés
de TM muni de la métrique riemannienne). Si de plus M est orientée, on appelle fibré des repères
orthonormés directs de M le fibré SOpMq des repères orthonormés directs de TM .

Avec les rappels précédents, on voit que PSL2pCq » Isom`pH3q agit transitivement et simplement
sur SOpH3q, on a donc SOpH3q » PSL2pCq. Soit V une variété hyperbolique fermée de dimension 3,
c’est-à-dire revêtue par H3, on a alors le diagramme commutatif suivant :

PSL2pCq PSL2pCq{π1pV q

SOpH3q SOpH3{π1pV qq

H3 V

PSUp2qz PSL2pCq PSUp2qz PSL2pCq{π1pV q

D’où finalement, SOpV q » PSL2pCq{π1pV q.
Par ailleurs, on a le résultat de Thurston :

Théorème 5.1.3 (Thurston, [97]). Soit M une variété hyperbolique fermée de dimension 3. Alors la
représentation de π1pMq dans PSL2pCq peut être relevée à SL2pCq.

Remarque. L’ensemble des relevés de Γ à SL2pCq est en bijection avec HompΓ,Z{2Zq » pZ{2Zq
b1pΓq et

correspond aux classes d’équivalence de structures spinorielle sur H3{Γ classifiée par H1pH3{Γq (puisque
toute 3-variété est spin).

On dispose donc d’un isomorphisme l : π1pMq Ñ Γ Ă SL2pCq et on peut alors considérer la variété
SL2pCq{Γ. La variété SL2pCq{Γ est donc un double revêtement (revêtement spin) du fibré des repères
orthonormés de la variété hyperbolique H3{Γ. Puisque cette variété est revêtue par H3, c’est en particulier
un espace d’Eilenberg-Maclane KpΓ, 1q et la cohomologie à coefficients entiers de cette variété coïncide
avec celle de Γ :

HnpH3{Γ,Zq » HnpΓ,Zq, n ě 0

Par ailleurs, nous l’avons vu, puisque SL2pCq est Stein, la cohomologie du quotient SL2pCq{Γ est reliée
à celle de Γ, plus précisément :
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Proposition 5.1.4. Soit M une variété hyperbolique fermée de dimension 3 et Γ Ă PSL2pCq une repré-
sentation de son groupe fondamental (correspondant à la structure hyperbolique). Alors, on a les isomor-
phismes suivants :

HipSL2pCq{Γq »HipΓq, i “ 0, 1, 2

HipSL2pCq{Γq »Hi´3pΓq, i “ 4, 5, 6

Démonstration. Soit rΓ un relevé de Γ. La variété SL2pCq{rΓ est homéomorphe à SUp2q ˆ H3{Γ. En par-
ticulier, la formule de Künneth nous donne

HnpSL2pCq{rΓq »
à

p`q“n

HppH3{Γq bHqpSUp2qq

mais puisque SUp2q est la sphère de dimension 3,

HqpSUp2qq “

$

&

%

R, si q “ 0, 3

0 sinon.

On a alors le résultat annoncé.

5.1.1 Théorèmes de rigidité

Dès que l’on se donne un groupe discret co-compact Γ dans SL2pCq sans torsion, on peut reconstruire
une variété hyperbolique fermée de dimension 3 via H3{ppΓq (où p : SL2pCq Ñ PSL2pCq est la projection
naturelle). De plus, cette correspondance entre sous-groupes discrets co-compacts sans torsion de PSL2pCq

et les 3-variétés hyperboliques fermées est essentiellement unique par la célèbre rigidité de Mostow :

Théorème 5.1.5 (Rigidité de Mostow (forme algébrique), [78]). Soient Γi, i “ 1, 2, deux sous-groupes
discrets co-compacts de PSL2pCq isomorphes. Alors, l’isomorphisme entre Γ1 et Γ2 s’étend en un auto-
morphisme continu de PSL2pCq.

En particulier, le résultat s’applique lorsque G “ SOpn, 1q, n ě 3 et on obtient la formulation géomé-
trique suivante :

Théorème 5.1.6 (Rigidité de Mostow (forme géométrique), [78]). Soient M et N deux variétés hyper-
boliques de dimension n ě 3. Tout isomorphisme π1pMq Ñ π1pNq provient d’une unique isométrie entre
M et N .

Remarque. Lorsque le quotient d’un groupe de Lie G par un sous-groupe discret Γ a une mesure de Haar
finie, le groupe Γ est appelé un réseau de G. Le théorème de de rigidité de Mostow à été généralisé au
cas des réseaux irréductibles par G. Prasad [85].

Dans le cas qui nous intéresse, puisque SL2pCq n’a pas un centre trivial, on peut appliquer la rigidité
de Mostow à SL2pCq en projetant sur PSL2pCq et en relevant ensuite.

Lemme 5.1.7 (Dieudonné, [23]). Les automorphismes extérieurs de PSL2pCq sont, à conjugaison près,
soit l’identité soit la conjugaison complexe.

88



5.2. pSL2pCq ˆ SL2pCq, SL2pCqq-structure des quotients

On obtient alors le corollaire suivant :

Corollaire 5.1.8. Si ϕ est un isomorphisme entre deux sous-groupes de SL2pCq discrets et co-compacts
Γ1 et Γ2 alors il existe un morphisme de groupes ε : Γ1 Ñ ˘tIdu et un élément g P SL2pCq tel que ϕ soit
donné par

ϕ “ ε.ιg : Γ1 Ñ Γ2, γ ÞÑ εpγqgγg´1

ou par
ϕ “ ε.ιg : Γ1 Ñ Γ2, γ ÞÑ εpγqgγg´1

où γ désigne la conjugaison complexe de γ.

On peut aussi déduire la finitude du groupe des difféotopies. Notons NpΓq le normalisateur de Γ dans
SL2pCq, c’est-à-dire

NpΓq :“
␣

g P SL2pCq | gΓg´1 “ Γ
(

Corollaire 5.1.9. Soit Γ le groupe fondamental d’une variété hyperbolique M de dimension 3 de volume
fini. Le groupe des automorphismes extérieurs OutpΓq “ NpΓq{Γ de Γ est isomorphe au groupe des
isométries de M .

Proposition 5.1.10 ([7, Theorem C.5.6]). Soit Γ le groupe fondamental d’une variété M hyperbolique
connexe orientée et compacte, alors OutpΓq est un groupe fini.

On a aussi le théorème de Mostow-Weil concernant la rigidité locale des représentations discrètes et
fidèles.

Théorème 5.1.11 (Weil, [105]). Soient G un groupe de Lie connexe semi-simple sans facteur compact
et Γ Ă G un réseau uniforme, on note i : Γ ãÑ G le plongement de Γ dans G. Si G n’est pas localement
isomorphe à SL2pRq, alors le plongement i est rigide, au sens où tout morphisme suffisamment proche
de i sera i lui même. Plus précisément, on a H1pΓ, gq “ 0 (où la structure de Γ-module est donnée par
Adi).

Dans le contexte évoqué dans la sous-section précédente, on peut déduire que le relèvement de la
représentation l de π1pV q dans SL2pCq est rigide.

Remarque. Le cas exceptionnel de SL2pRq provient des déformations des surfaces de Riemann hyperbo-
liques. Notons que la condition de co-compacité joue un rôle très important. Dans le cas d’un réseau
non co-compact de SL2pCq, les résultats de Thurston sur la chirurgie hyperbolique de Dehn utilisent la
non-rigidité.

5.2 pSL2pCq ˆ SL2pCq, SL2pCqq-structure des quotients

Soit M une variété complexe. Nous appellerons fibré tangent (resp. cotangent) holomorphe de M le
fibré T 1,0M (resp. pT 1,0Mq˚) et nous le noterons plus simplement TM (resp. T˚M) lorsqu’il n’y aura
pas d’ambiguïtés. De la même façon le fibré tangent (resp. cotangent) anti-holomorphe de M est le fibré
T 0,1M (resp. pT 0,1Mq˚).
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Définition 5.2.1. Soit M une variété complexe. Une métrique riemannienne holomorphe g sur M est une
section globale holomorphe du fibré S2pT˚Mq des 2-tenseurs symétriques de T˚M partout non-dégénérée.

Une métrique riemannienne holomorphe peut-être vue comme l’analogue complexe d’une métrique
riemannienne et on peut définir des géodésiques, une connexion de Levi-Civita, un tenseur de courbure
etc. Le lecteur pourra consulter les articles de Biswas, Dumitrescu ou Zeghib sur le sujet, par exemple
[26], [12].

Fixons maintenant et pour le reste de ce chapitre un sous-groupe discret Γ Ă SL2pCq co-compact, que
l’on supposera sans torsion et notons M le quotient SL2pCq{Γ.

On sait d’après la théorème 3.2.3 qu’une structure géométrique sur SL2pCq invariante à droite descen-
dra au quotient M. Par ailleurs, ce quotient est holomorphiquement parallélisable, c’est-à-dire que son
fibré tangent est isomorphe à M ˆ sl2pCq où sl2pCq est l’algèbre de Lie de SL2pCq considérée comme l’al-
gèbre des champs de vecteurs invariants par translation à droite sur SL2pCq. On déduit alors qu’une forme
quadratique sur sl2pCq permettra de définir une métrique holomorphe. En particulier, sl2pCq possède une
forme quadratique bi-invariante : la forme de Killing K. Elle est définie par

Kpx, yq “ Trpadpxq ˝ adpyqq “ 4 Trpxyq

Cette forme est non-dégénérée (équivalent à la semi-simplicité de sl2pCq via le critère de Cartan) et elle
permet donc de définir une métrique riemannienne holomorphe sur M. La connexion de Levi-Civita,
les géodésiques et le tenseur de courbure de cette métrique sont rappelés dans [31], rappelons quelques
éléments ici qui nous seront utiles :

Proposition 5.2.2 (Ghys, [31]). Soient x, y P sl2pCq. On note encore K la métrique riemannienne
holomorphe sur SL2pCq induite par la forme de Killing.

‚ la courbure sectionnelle de K est constante et non nulle (sa valeur dépend du choix fait pour définir
K),

‚ les géodésiques passant par Id sont les sous-groupes à un paramètre,

‚ l’action du groupe SL2pCq ˆ SL2pCq sur SL2pCq par multiplication à gauche et à droite est isomé-
trique.

Remarque. Notons que l’action de SL2pCqˆSL2pCq sur SL2pCq n’est pas fidèle puisque l’élément p´ Id,´ Idq

agit trivialement. Il faudrait donc remplacer SL2pCq ˆ SL2pCq par pSL2pCq ˆ SL2pCqq { ˘ pId, Idq.

L’intérêt de ces définitions et remarques tient à la proposition suivante :

Proposition 5.2.3. Toute variété complexe de dimension 3 munie d’une métrique riemannienne holo-
morphe à courbure constante non nulle est localement isométrique à SL2pCq muni d’un multiple de la
métrique de Killing. En particulier, une telle variété admet une pSL2pCq ˆ SL2pCq,SL2pCqq-structure.

Pour des détails sur ce résultats, voir par exemple [26].
En particulier, les variétés du type SL2pCq{Γ sont naturellement munies d’une pSL2pCqˆSL2pCq,SL2pCqq-

structure complète donnée par les multiplications à gauche et à droite sur SL2pCq dont l’holonomie est
simplement donnée par

h : Γ Ñ SL2pCq ˆ SL2pCq, γ ÞÑ pId, γq
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Remarque. Puisqu’il existe des 1-formes invariantes à droites non-fermées sur SL2pCq, les variétés SL2pCq{Γ
ne sont pas des variétés kählériennes. On peut aussi remarquer qu’elles ne sont pas symplectique (voir
[31]).

5.3 Espaces de Kuranishi des espaces homogènes de SL2pCq

Nous nous intéressons maintenant aux déformations de la structure complexe de SL2pCq{Γ. Les rappels
précédents peuvent être résumés dans le schéma suivant :

SL2pCq{Γ
pG ˆ G,Gq-structure,

d’holonomie
h : γ ÞÑ pId, γq

Déformations
données par

h1 : γ ÞÑ pρpγq, ηpγqq

Réduction au cas
h1 : γ ÞÑ pρpγq, γq

pG ˆ G,Gq-structure
complète

d’holonomie h1

Quotients
de SL2pCq par h1pΓq

Admet une
structure complexe

Déformations de la
structure complexe

Kodaira Spencer

Théorie dePrincipe
d’Ehresmann Thurston

Rigidité de
WeilMostow

Complétude
par

Tholozan
“

G-conjugaison
Aut

Figure 5.1 – Schéma d’obtention de nouvelles structures complexes

Remarque. L’action de Γ définie par l’holonomie

h1 : Γ Ñ SL2pCq ˆ SL2pCq, γ ÞÑ pρpγq, γq

est donnée par
Γ ˆ SL2pCq Ñ SL2pCq, pγ, xq ÞÑ ρpγq´1xγ

Dans toute la suite, on notera Mρ ces quotients. Et comme précédemment, nous désignerons par RpΓq

la SL2pCq-variété des représentations de Γ et par RpΓqa le sous-espace de RpΓq formé des représentations
admissibles.

A partir de là, Ghys montre que

‚ les déformations de structures complexes s’obtiennent toutes par ce principe [31, Théorème A],

‚ les orbites de la conjugaison par G sur la variété des représentations correspondent aux automor-
phismes des variétés correspondantes [31, Théorème B].

Et il obtient :
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Théorème 5.3.1 (Ghys, [31, Théorème A]). L’espace de Kuranishi de M est donné par le germe de la
variété des représentations RpΓq pointée au morphisme trivial ρ0.

Remarque. Il faut bien considéré la variété de représentation et non pas la variété de caractères. En
effet, certaines orbites de représentations non-triviales peuvent s’accumuler sur ρ0 et ne seront alors plus
distinguer dans le quotient GIT (voir la théorème 4.3.12). Or, ces représentations donnent lieu à des
variétés non-biholomorphes.

Le théorème 5.3.1 n’aurait pas d’intérêt si il n’existait pas de représentations admissibles proches de
la représentation triviale. Pour justifier de la pertinence de ce résultat, Ghys montra le lemme suivant :

Lemme 5.3.2 (Ghys, [31, Lemme 2.1]). Soit ρ une représentation suffisamment proche de la représen-
tation triviale ρ0 : Γ Ñ Id, alors ρ est admissible et la variété Mρ est C8-difféomorphe à M.

Nous l’avons vu dans le chapitre 3, ce lemme à été largement généralisé, entre autre, par les travaux
de Kassel. Remarquons aussi que deux représentations conjuguées par un élément de SL2pCq sont
simultanément admissibles ou non-admissibles.

Nous pouvons réécrire le théorème 3.3.8 avec ces notations de la façon suivante :

Corollaire 5.3.3 (Kassel, [50]). Le sous-espace RpΓqa est ouvert dans RpΓq.

Signalons aussi le résultat de Ghys concernant les tenseurs holomorphes sur Mρ. Pour cela, rappelons
quelques faits.

On appelle parallélisme sur une variété M une trivialisation globale du fibré tangent de M . La donnée
d’un parallélisme sur une variété permet alors de définir uniquement une connexion plate du fibré tangent
de cette variété. Les champs de vecteurs parallèles pour cette connexion correspondent aux champs
de vecteurs dont les coordonnées (dans un champ de repères associé au parallélisme) sont constantes.
Réciproquement, la donnée d’une connexion plate sur le fibré tangent d’une variété M et d’une base
d’un espace tangent TxM pour un certain x P M définit un parallélisme. Dans le cas de SL2pCq (plus
généralement dans le cas d’un groupe de Lie), l’algèbre de Lie des champs de vecteurs invariants à droite
(resp. à gauche) permet de définir une connexion plate ∇d (resp. ∇g).

Remarque. La connexion de Levi-Civita de la métrique de Killing est la moyenne des connexions ∇d et
∇g.

Cette connexion est bi-invariante et descend donc au quotient Mρ et permet d’identifier le fibré
tangent TMρ de Mρ au fibré pSL2pCq ˆ sl2pCqq{Γ où l’action est donné par les transformations de deck,
c’est-à-dire par :

Γ ˆ SL2pCq ˆ sl2pCq ÝÑ SL2pCq ˆ sl2pCq

pγ, px, vqq ÞÝÑ
`

ρpγq´1xγ,Adρpγq´1 pvq
˘

(5.1)
`

resp. pγ, px, vqq ÞÝÑ
`

ρpγq´1xγ,Adγpvq
˘ ˘

(5.2)

La connexion ∇d (resp. ∇g) permet alors d’identifier le fibré tangent de Mρ au système local sl2pCqρ

(resp. sl2pCqi où i : Γ Ñ SL2pCq est l’inclusion).
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Soit σ : GL3pCq Ñ GLnpCq une représentation linéaire. On considère le fibré associé à σ, que l’on
note TσpMρq, obtenu comme quotient de SL2pCq ˆ Cn par l’action

Γ ˆ SL2pCq ˆ Cn Ñ SL2pCq Ñ Cn, pγ, px, vqq ÞÑ
`

ρpγq´1xγ, pσ ˝ Ad ˝ρpγ´1qqpvq
˘

On appelle σ-tenseur holomorphe toute section holomorphe de TσpMρq.

Théorème 5.3.4 (Ghys, Théorème 5.3 [31]). Tout σ-tenseur holomorphe sur Mρ se relève à SL2pCq

en un tenseur invariant à droite par SL2pCq et à gauche par ρpΓq.

Remarque. Dans le théorème précédent, on a même un peu mieux [lemme 5.1]Ghys : tout σ-tenseur
holomorphe sur Mρ se relève à SL2pCq en un tenseur invariant à gauche par la clôture de Zariski de ρpΓq.

En particulier, on voit que pour σ “ Id, TσpMρq “ TMρ et les Id-tenseurs holomorphes sont donc
les champs de vecteurs holomorphes.

Proposition 5.3.5 (Ghys, Corollaire 5.4 [31]). Soit ρ P RpΓqa, alors

Ȟ0pMρ,Θρq » sl2pCqρpΓq

où sl2pCqH est le sous-espace des H-invariants de sl2pCq (pour l’action adjointe).

En particulier, si l’on note hipρq “ dim ȞipMρ,Θρq, on a

Corollaire 5.3.6 (Ghys, [31]). Soit ρ P RpΓqa, alors

‚ Si l’image de ρ est contenue dans le centre de SL2pCq, alors h0pρq “ 3,

‚ si l’image de ρ est abélienne mais non contenue dans le centre de SL2pCq, alors h0pρq “ 1,

‚ dans les autres cas, h0pρq “ 0.

5.3.1 Premier nombre de Betti

Remarquons que si la représentation triviale ρ0 est un point isolé de la variété des représentations, le
théorème 5.3.1 affirme que la variété SL2pCq{Γ est rigide au sens où toute déformation de sa structure
complexe est localement triviale. Remarquons par ailleurs que la construction de Weil (voir le théo-
rème 4.2.7) implique que l’espace tangent à RpΓq au point ρ0 est isomorphe au groupe H1pΓ, sl2pCqq (la
structure de Γ-module de slρ0

2 est triviale). Le théorème des coefficients universels appliqué à ce groupe
affirme que

dimH1pΓ, sl2pCqq “ dimH1pΓ,Cq b sl2pCq “ 3 dimH1pΓ,Cq “ 3b1pΓq

où b1pΓq est le premier nombre de Betti de Γ (le rang de l’abélianisé de Γ). En particulier :

Proposition 5.3.7 (Ghys [31]). Si b1pΓq “ 0, alors ρ0 est un point isolé et réduit de RpΓq et Mρ0 est
rigide.

Par ailleurs, nous avons le résultat suivant :

Proposition 5.3.8 (Ghys Théorème 6.3 [31]). Si b1pΓq “ 1 alors toute représentation suffisamment
proche de la représentation triviale est à image abélienne.
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On obtient alors le corollaire suivant :

Corollaire 5.3.9. Si b1pΓq “ 1 alors la composante connexe (de Zariski) dans RpΓq de la représentation
triviale est composée uniquement de représentations à images abéliennes.

Démonstration. Notons RpΓq0 la composante connexe de ρ0. La proposition précédente affirme qu’il
existe un voisinage ouvert de ρ0 ne contenant que des représentations abéliennes (c’est-à-dire à images
abéliennes). Or la condition d’être abélien pour une représentation s’exprime sur un système de généra-
teurs de Γ et est une condition Zariski fermée.

Remarque. Le cône quadratique tangent à RpΓq est déterminé par les zéros du cup-crochet

r ! s : Ȟ1pM,Θq ˆ Ȟ1pM,Θq Ñ Ȟ2pM,Θq

et puisque H1pM,Θq » H1pM,Cq b sl2pCq, cette forme s’écrit rc1 b X1 ! c2 b X2s “ c1 ! c2 b

rX1, X2s. Comme il est remarqué dans [31], les tenseurs élémentaires c b X sont isotropes pour cette
forme quadratique et par conséquent le cône quadratique tangent ne dépend que de la structure de
l’anneau de cohomologie rationnelle de la variété V » H3{Γ qui est complètement décrit par sa forme
d’intersection

H1pV,Qq ˆH1pV,Qq ˆH1pV,Qq Ñ Q

c’est-à-dire, par une forme tri-linéaire alternée sur un espace de dimension b1pΓq.

Signalons aussi dans cette section que le cas b1pΓq “ 0 est particulier. En effet, le complémentaire
de RpΓqa dans RpΓq contient l’ouvert définit par les représentations ρ tels que Lippρq ą 1, qui est non-
vide dès que la variété de caractère est non-compacte. Puisque cette variété de caractère est une variété
affine complexe, elle ne sera compacte que si c’est un ensemble fini. Donc, l’ouvert des représentations
admissibles ne sera jamais ouvert pour la topologie de Zariski sauf lorsque la variété de caractère est un
ensemble fini, ce qui correspond au cas b1pΓq “ 0. Je remercie N. Tholozan pour m’avoir fait cette
remarque.

Enfin, ce paragraphe justifie, au moins partiellement, la difficulté des calculs explicites dans les cas
b1pΓq ě 2 et en particulier, il justifie le choix des exemples à la fin de cette thèse.

5.3.2 Difféomorphismes entre les variétés Mρ

Nous profitons des énoncés précédents pour donner une caractérisation des variétés Mρ qui nécessite
l’utilisation d’une fonction pi, ρq-équivariante :

Proposition 5.3.10 (Proposition 7.2 [42]). Pour tout ρ P RpΓqa, la variété Mdiff
ρ (la variété différen-

tiable sous-jacente à Mρ) est homéomorphe à un fibré sur H3{Γ de fibre SUp2q et de groupe structural
SUp2q ˆ SUp2q.

Même s’il n’est pas utile de redonner la preuve ici, cela a l’avantage d’être instructif et d’exhiber le
lien entre la géométrie de ces quotients et la constante minimale de Lipschitz.
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Démonstration. Par le théorème 3.3.7 on sait qu’il existe une application f : H3 Ñ H3 qui soit k-
Lipschitzienne et pi, ρq-équivariante, avec k ă 1. Pour tout p P H3, posons

Lp :“ tg P SL2pCq|g.p “ fppqu

Un élément g P SL2pCq appartient à Lp si, et seulement si, p est fixé par g´1 ˝ f . Mais comme f vérifie
Lippfq ă 1 il en va de même pour g´1 ˝ f . Un tel point fixe existe et est donc unique et un élément
g P SL2pCq appartient donc à un unique Lp. On considère l’application Π : SL2pCq Ñ H3 qui à un
élément g P SL2pCq associe le point p tel que g P Lp. Cette application est continue et vérifie la condition
d’équivariance induite par celle de f :

ρpγqLpγ´1 “ Lγ.p

et descend donc en une fibration de Mρ sur H3{Γ.
On peut voir que les fibres de cette fibration sont de la forme g SUp2qh avec g, h P SL2pCq. On peut

donc canoniquement les identifier à SUp2q modulo l’action du stabilisateur de SUp2q dans SL2pCq ˆ

SL2pCq (agissant par multiplication à gauche et à droite). On a donc bien SUp2q ˆ SUp2q comme groupe
structural.

En adaptant cette preuve à notre contexte, nous obtenons alors :

Corollaire 5.3.11. Pour toute représentation admissible ρ, la variété Mρ est C8 difféomorphe à SL2pCq{Γ.

Démonstration. On considère la variété Nρ définit par le quotient de PSL2pCq sous l’action

Γ ˆ PSL2pCq Ñ PSL2pCq, pγ, xq Ñ ppρpγq´1qxppγq

où p : SL2pCq Ñ PSL2pCq est la projection naturelle. On sait par la proposition précédente, que ces
variétés Nρ sont homéomorphes à des fibrés sur H3{Γ de fibres PSUp2q » RP 3 et de groupe structural
PSUp2q ˆ PSUp2q » SOp4q{t˘ Idu. Par annulation de la seconde classe de Stiefel-Whitney du fibré
Nρ Ñ H3{Γ (la variété H3{Γ est compacte, fermée et orientée), on a alors un double revêtement Mρ Ñ Nρ

qui induit une extension du fibré Nρ Ñ H3{Γ en un fibré Mρ Ñ H3{Γ de fibre ČPSUp2q “ SUp2q et de
groupe structural SUp2q ˆ SUp2q » Spinp4q. Soit tUαu un recouvrement ouvert de H3{Γ trivialisant le
fibré Mρ Ñ H3{Γ et c :“ tcαβu

cαβ : Uα X Uβ Ñ Spinp4q

le cocycle définissant ce fibré.
Considérons AdSpinp4qpMρq le fibré principal associé au fibré Mρ Ñ H3{Γ, c’est-à-dire le fibré d’espace

total définit par quotient de
T :“

ğ

α

Uα ˆ Spinp4q

par la relation d’équivalence

px, yq „ px, cαβpxq.yq, x P Uα X Uβ , y P Spinp4q

Puisque π1pSpinp4qq “ π2pSpinp4qq “ 0, B Spinp4q est 3-connexe. On sait par ailleurs [77, p.6] qu’une
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application f : X Ñ Y d’un espace X de dimension n vers un espace Y n-connexe est homotopiquement
triviale. On en déduit donc

rH3{Γ, B Spinp4qs “ 0

où l’on note rX,Y s l’espace des classes d’homotopie de fonctions continues de X dans Y . On déduit
que AdSpinp4qpMρq est un fibré trivial. Or, la construction du fibré principal associé est une construction
qui descend aux classes d’équivalences de fibrés donc le fibré original Mρ Ñ H3{Γ est lui aussi trivial.
Finalement, on obtient que l’espace total Mρ est difféomorphe à H3{Γ ˆ SUp2q » SL2pCq{Γ.

Remarque. En partant dans l’autre sens et en considérant des représentations pρ1, i1q P HompΓ,PSL2pCqq2,
l’extension de la fibration PSUp2q Ñ Nρ Ñ H3{Γ en une fibration de fibres ČPSUp2q “ SUp2q est équiva-
lente aux conditions suivantes (voir [5]) :

‚ π1pPSUp2qq Ñ π1pNρq est injectif,

‚ π1pNρq Ñ π1pH3{Γq admet un inverse.

Par construction, la première condition est vérifiée et la deuxième est équivalente à l’existence d’une
application pρ, iq P HompΓ,SL2pCqq2 qui relève pρ1, i1q. Puisque Γ est le groupe fondamental d’une 3-variété
hyperbolique, l’application i, que l’on suppose toujours injective à image discrète, ce relève toujours à
SL2pCq par le théorème 5.1.3. On est donc ramené à la question de savoir si ρ1 se relève, ou de façon
équivalente si son cocycle associé cρ1 P H2pΓ, π1pPSL2pCqqq représente la classe triviale. Mais ce cocycle
est la seconde classe de Stiefel-Whitney du fibré Nρ Ñ H3{Γ est toujours nulle et on conclut que fibré
s’étend toujours.

5.4 Groupes d’automorphismes des variétés Mρ

La proposition suivante affirme que les biholomorphismes de Mρ n’apparaissent que dans les cas
« triviaux »donnés par la conjugaison et les automorphismes de Γ.

Proposition 5.4.1 (Ghys, [31]). Soient ρ et η deux représentations admissibles. Alors Mρ et Mη sont
biholomorphes si, et seulement s’il existe g, h dans SL2pCq et ε P HompΓ, t˘Iduq tels que ε.ιhpΓq “ Γ et

εpγq. gηpγqg´1 “ ρpεpγqhpγqh´1q, @γ P Γ

Sans redonner les détails présents dans [31], donnons la stratégie de la preuve. On relève le biholo-
morphisme entre Mρ et Mη au revêtement SL2pCq en un biholomorphisme Φ. Quitte à composer Ψ par
une conjugaison interne, la condition d’équivariance sur Φ s’écrit alors :

Ψpρpγq´1xγq “ ηpγq´1Ψpxqγ

L’auteur montre qu’une fonction qui vérifie cette condition d’équivariance pour cette SL2pCq ˆ SL2pCq ˆ

SL2pCq-action (restreinte au groupe rΓ :“ tpρpγq, ηpγq, γq | γ P Γu) doit la satisfaire sur la clôture (de
Zariski) de rΓ et montre que cette clôture contient tIdu ˆ tIdu ˆ SL2pCq. Il en déduit alors que Ψ est une
fonction qui commute aux translations à droite et est donc une translation à gauche ce qui conclut alors
la preuve.
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5.4.1 Automorphismes des variétés Mρ

Un ingrédient essentiel dans la suite est la compréhension des groupes d’automorphismes des variétés
complexes Mρ.

Soit ϕ un automorphisme de Mρ. On notera dans la suite rϕ le relevé de ϕ au revêtement universel.
Nous commençons un corollaire de la théorème 5.4.1 :

Corollaire 5.4.2. Si ϕ est un automorphisme de Mρ, alors il existe g et δ dans SL2pCq tels que rϕ “

Lg ˝Rδ.

Démonstration. Pour la démonstration de ce lemme, on utilise un cas particulier du théorème B de [31].
Soit ρ P RpΓqa et soit ϕ un automorphisme de Mρ. Cet automorphisme se relève en un biholomorphisme
rϕ de SL2pCq tel qu’il existe θ P AutpΓq tel que

rϕpγ ‚
ρ
xq “ θpγq ‚

ρ
rϕpxq, @γ P Γ.

Puisque SL2pCq a un centre non trivial égal à t˘ Idu, on applique le théorème de rigidité de Mostow
(voir théorème 5.1.5) à PSL2pCq et on relève ensuite à SL2pCq. On sait donc qu’il existe un élément ζ de
SL2pCq et ε P HompΓ, t˘ Iduq tel que θ “ ε. ιζ |Γ.

Considérons une autre représentation η P RpθpΓqq telle que

ιζ ˝ ρpγq “ εpγq.η ˝ θpγq, @γ P Γ

Il est facile de voir que Θ descend en un biholomorphisme entre Mρ et Mη, puisque :

ιζpγ ‚
ρ
xq “ εpγqηpθpγ´1qqιζpxqιζpγq “ εpγq2θpγq ‚

η
ιζpxq “ θpγq ‚

η
ιζpxq, @γ P Γ

Si on pose ψ “ rϕ ˝ ιζ´1 , on a alors :

ψpγ ‚
η
xq “ γ ‚

ρ
ψpxq, @γ P Γ

E. Ghys à montré qu’un tel biholomorphisme est nécessairement donné par une translation à gauche par
un élément h P SL2pCq et les deux représentations ρ et η sont conjuguées par ce même élément h.

Lorsque ψ “ Lh on obtient rϕpxq “ ψ ˝ ιζpxq “ hζxζ´1. La condition sur h et ζ pour que rϕ descend
en un automorphisme de Mρ est donné par :

ρpεpγq.ιζpγqq “ εpγq.ιhζpρpγqq, @γ P Γ (5.3)

Notons par Gρ l’ensemble formé des paires ph, ζq P SL2pCqˆSL2pCq pour lesquelles x ÞÑ Lhζ ˝Rζ´1 pxq

descende en un automorphisme de Mρ, c’est-à-dire formé des paires ph, ζq qui satisfont (5.3) pour un
certain ε P HompΓ, t˘ Iduq.
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Corollaire 5.4.3. Soit ρ P RpΓqa alors

Gρ Ñ AutpMρq, ph, ζq ÞÑ Lhζ ˝Rζ´1

est un morphisme surjectif de noyau donné par les transformations de deck, c’est-à-dire de noyau iso-
morphe à Γ.

Démonstration. Le morphisme Gρ Q ph, ζq ÞÑ rϕ :“ Lhζ ˝ Rζ´1 P AutpMρq est surjectif par définition
de Gρ (et par caractérisation des automorphismes de Mρ dans le théorème 5.4.2). Puisque SL2pCq est
simplement connexe, rϕ descend en l’identité Id P AutpMρq si, et seulement si, rϕ est une transformation de
deck, c’est-à-dire, rϕpxq “ γ ‚

ρ
x pour un certain γ P Γ, ou de manière équivalente ph, ζq “ pρpγq´1γ, γ´1q.

5.4.2 Composante connexe du groupe d’automorphismes

On va maintenant utiliser la caractérisation des relevés des automorphismes des variétés Mρ pour
calculer la composante connexe de l’identité du groupe d’automorphismes. Grâce au lemme et au corollaire
précédents, on déduit le corollaire suivant.

Corollaire 5.4.4. Soit ρ P RpΓqa, alors la composante connexe de l’identité Aut0
pMρq du groupe d’au-

tomorphisme de Mρ est la composante connexe de l’identité du centralisateur CSL2pCqpρpΓqq de ρpΓq dans
SL2pCq.

Démonstration. Soit ϕ un automorphisme de Mρ isotope à l’identité. Il est clair ϕ se relève à SL2pCq en un
biholomorphisme rϕ qui ne permute pas les fibres, autrement dit, rϕ est Γ-équivariant pour l’automorphisme
identité de Γ :

rϕpγ ‚
ρ
xq “ γ ‚

ρ
rϕpxq

En suivant la preuve du théorème 5.4.2, cette condition implique que rϕ est une translation à gauche par
un élément h P SL2pCq. De plus, puisque Γ est toujours supposé sans torsion, ´ Id R Γ et la multiplication
par ´ Id n’est pas un automorphisme de Γ.

Finalement, la condition (5.3) appliqué à l’élément h nous dit que rϕ “ Lh descend en un automor-
phisme de Mρ si, et seulement si,

ρpγq “ ιhpρpγqq, @γ P Γ

On conclut donc que h est dans le centralisateur de ρpΓq dans SL2pCq.
Le centralisateur n’étant pas toujours connexe (si ρ est non-abélien par exemple, CSL2pCqpρpΓqq “

t˘ Idu), il faut donc se restreindre à la composante connexe de l’identité.

Remarque. Le centralisateur d’un tel groupe est facile à déterminer selon la nature de ρ :

‚ si ρpΓq Ă ZpSL2pCqq “ t˘ Idu on a évidemment Aut0
pMρq » SL2pCq,

‚ si ρpΓq est abélien, Aut0
pMρq est isomorphe à la composante connexe de l’identité d’un sous-groupe

à paramètre de SL2pCq,

‚ sinon, Aut0
pMρq “ tIdu
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5.4.3 Automorphismes C8-isotope à l’identité

On note Aut1
pMρq le groupe des automorphismes C8-isotope à l’identité, c’est-à-dire Aut1

pMρq “

AutpMρq X Diff0
pMρq.

Remarque. Attention, pour une variété compacte complexe M quelconque, le groupe Aut1
pMq n’est pas

toujours égal à Aut0
pMq. Il existe de tels exemples dans [73].

Ce groupe joue un rôle très important dans la construction de l’espace de Teichmüller (voir chapitre 7)
puisque il définit le groupe d’isotropie des points de celui-ci.

Proposition 5.4.5. Soit ρ P RpΓqa, alors Aut1
pMρq “ CSL2pCqpρpΓqq.

Démonstration. En utilisant les résultats précédents, la proposition est équivalente à montrer que tout
automorphisme de Mρ induit par un élément g P CSL2pCqpρpΓqq est bien C8-isotope à l’identité.

Puisque les centralisateurs d’images de représentations sont tous connexes dans PSL2pCq (ils le sont
dans GL2pCq et donc dans PGL2pCq “ PSL2pCq), il suffit de vérifier que l’automorphisme de Mρ induit
par ´ Id est C8-isotope à l’identité.

Nous l’avons vu dans la théorème 5.3.11, les variétés Mρ sont difféomorphes à des fibrés sur H3{Γ de
fibre S3. Rappelons que la fibration rΠs : Mρ Ñ H3{Γ est induite par la fibration

Π : SL2pCq Ñ H3, g ÞÑ p

où p P H3 est tel que g P Lp où
Lp :“ tg P SL2pCq|g.p “ fppqu

et f : H3 Ñ H3 est une application k-Lipschitzienne pi, ρq-équivariante, avec k ă 1. Il est facile de voir
que Πp´gq “ Πpgq puisque ´ Id agit trivialement sur H3. L’automorphisme de Mρ induit par ´ Id induit
donc un difféomorphisme des fibres S3 du fibré Mρ Ñ H3 sans agir sur la base. Nous l’avions vu, les
fibres de cette fibration sont de la forme g SUp2qh avec g et h P SL2pCq et puisque ´ Id est dans le centre,
il commute à g et h. En identifiant les fibres à S3, l’action de ´ Id correspond à l’action par antipodie
sur chaque fibre S3 par antipodie. L’application x ÞÑ ´x dans S3 est homotope à l’identité. Il en résulte
que l’automorphisme induit par ´ Id est homotope à l’identité.

Remarque. Les variétés Mρ pour lesquelles l’image de Γ par ρ ont un centralisateur dans SL2pCq non
connexe sont donc des exemples de variétés pour lesquelles Aut1

pMρq ‰ Aut0
pMρq (plus précisément

Aut1
pMρq{ Aut0

pMρq » Z{2Z). Le lecteur intéressé pourra consulter [73] pour d’autres exemples.

5.4.4 Groupe des difféotopies

Un corollaire immédiat des calculs précédent permet de donner explicitement le groupe AutpMρq{ Aut1
pMρq.

Corollaire 5.4.6. Le groupe AutpMρq{ Aut1
pMρq est isomorphe au groupe AutpΓq{Γ. En particulier il

est indépendant de ρ.

Démonstration. Par définition et en utilisant le théorème 5.4.1 et le théorème 5.4.5, on obtient :

AutpMρq{ Aut1
pMρq » tε.ιζ P AutpΓq|ζ P SL2pCq, ε P HompΓ, t˘ Iduqu{ „
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où ε.ιζ „ ε.ιζγ .

Remarque. Notons par ailleurs que ce théorème 5.1.9 implique la finitude de ce groupe. En effet, AutpΓq Ă

HompΓ, t˘ Iduq ˆNpΓq implique # AutpΓq ď 2b1pΓq ˆ #NpΓq ă `8 par le théorème 5.1.10.

Remarque. Il est probable que ce groupe soit en fait le groupe des difféotopies de SL2pCq{Γ.
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Chapitre 6

ESPACE DE KURANISHI DE Mρ

Le calcul des espaces de Kuranishi des variétés Mρ est, comme nous l’avons vu dans le chapitre
concernant les champs, indispensable pour la construction d’un groupoïde analytique, atlas du champ

de Teichmüller de ces variétés. Ce chapitre propose donc de les déterminer.
On sait, par Ehresmann-Thurston que pour toute représentation admissible ρ, la variété des repré-

sentations, pointée en ρ, permet de construire des déformations de la structure complexe de Mρ. Il est
donc naturel de s’intéresser à la famille tautologique au dessus de RpΓqa. Ce chapitre propose de montrer
le résultat central de cette thèse :

Théorème 6.0.1 (de complétude). Il existe un ouvert de Zariski (analytique) V de RpΓqa sur lequel la
déformation de la variété Mρ, avec ρ P V , donnée par la famille tautologique au dessus de V est complète.

L’idée principale de la démonstration de la complétude de cette famille repose sur le même principe que
celui utilisé par Ghys. Nous démontrons que le plongement du faisceau des germes de sections de TMρ

localement constantes dans le faisceau Θρ des germes de champs de vecteurs holomorphes sur Mρ induit
une injection entre les premiers groupes de cohomologie et que ce plongement induit un isomorphisme en
degré 1. Au niveau des points singuliers, la stratégie est de regarder les déformations aux ordres supérieurs
et de montrer qu’un germe de déformation sur C peut toujours se relever un germe de déformation sur
la variété des représentations paramétré par C.

6.1 Cohomologie des variétés Mρ

Soit ρ une représentation admissible. Le faisceau Θρ des germes de champs de vecteurs holomorphes sur
Mρ s’identifie naturellement au faisceau des germes de sections holomorphes du fibré pSL2pCqˆsl2pCqq{Γ.

D’après les rappels sur les G-fibrés principaux faits dans le chapitre 3, ce fibré plat est donné par une
représentation du groupe fondamental et on note aussi Fρ le faisceau des sections de TMρ localement
constantes. Notons que Fρ se plonge dans le faisceau Θρ.

Rappelons que le théorème 3.2.2 affirme que le premier groupe de cohomologie de Mρ à valeurs dans
le faisceau Fρ correspond aux déformations infinitésimales de la pSL2pCq ˆ SL2pCq,SL2pCqq-structure de
Mρ.
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Proposition 6.1.1. On suppose qu’il existe au moins une représentation admissible ρ qui corresponde à
un point réduit dans la composante connexe de ρ0 de la variété des représentations RpΓqa. Alors, il existe
un ouvert Zariski (analytique) V de RpΓqa,0 tel que pour tout ρ P V , le plongement de Fρ dans Θρ induit
les isomorphismes

HipMρ,Fρq » HipMρ,Θρq, i “ 0 et 1

ainsi qu’une injection
H2pMρ,Fρq ãÑ H2pMρ,Θρq

Pour montrer ce résultat, nous allons expliciter les applications suivantes :

HipMρ,Fρq » HipΓ, sl2pCqρq ãÑ HipΓ,Hρq » HipMρ,Θρq, i “ 0, 1 et 2

où Hρ est le Γ-module des fonctions holomorphes globalement définies sur SL2pCq à valeurs dans sl2pCq.
Ce groupe (pour l’addition) est muni de la structure de Γ-module induite par pré-composition par l’action
de Γ via ‚

ρ
et post-composition par la représentation adjointe de ρ. C’est-à-dire :

Hρ Q f ÞÑ
`

γ.f : x ÞÑ Adρpγq´1 fpρpγ´1qxγq
˘

Remarquons que l’espace Γ-invariants de Hρ s’identifie à l’espace des sections globales holomorphes du
fibré tangent de Mρ. Rappelons que sl2pCqρ désigne l’algèbre de Lie sl2pCq munit de la structure de
Γ-module donnée par Adρ.

Lorsque la structure de Γ-module ne nous sera pas utile, nous omettrons le ρ dans son écriture. Par
exemple, H fera référence au groupe des fonctions holomorphes globalement définies sur SL2pCq à valeurs
dans sl2pCq.

Nous montrerons ensuite que l’injection est en fait un isomorphisme pour i “ 0 et i “ 1.

Lemme 6.1.2. Soit ρ P RpΓqa, alors

HipMρ,Fρq » HipΓ, sl2pCqρq, ãÑ HipΓ,Hρq » HipMρ,Θρq, i “ 0, 1 et 2

Démonstration. Le passage de la cohomologie de Čech à la cohomologie des groupes est donné par la
théorème 4.1.11 énoncée dans le chapitre 4. Appliquons alors cette proposition au quotient πρ : SL2pCq Ñ

Mρ et successivement aux faisceaux Fρ et Θρ. Comme le faisceau Fρ (resp. Θρ) est obtenu comme faisceau
de germes de sections localement constantes (resp. holomorphes) d’un fibré vectoriel, le pullback de ce
faisceau par πρ : SL2pCq Ñ Mρ est simplement le faisceau des germes de sections localement constantes
(resp. holomorphes) du pullback du fibré :

SL2pCq ˆ sl2pCq TMρ

SL2pCq Mρ

p1 p1

πρ

On conclut que l’ensemble des sections globalement constantes (resp. holomorphes) du fibré trivial
SL2pCq ˆ sl2pCq Ñ SL2pCq est l’ensemble des fonctions constantes (resp. holomorphes) de SL2pCq dans
sl2pCq, ce que l’on dénote abusivement encore par sl2pCq (resp. H).

102



6.1. Cohomologie des variétés Mρ

Rappelons que le théorème B de Cartan affirme que pour une variété Stein X et n’importe quel
faisceau cohérent F , les groupes HppX,Fq s’annulent pour p ě 1.

Dans notre contexte, SL2pCq est une variété Stein puisqu’elle est isomorphe à la variété affine ad´bc “

1 dans Cra, b, c, ds et le faisceau Θρ est cohérent. On se retrouve donc avec les isomorphismes suivants :

HipΓ,Hρq » HipMρ,Θρq, i P N

Le faisceau Fρ n’est pas cohérent mais en remarquant que SUp2q est un rétracte par déformation de
SL2pCq, on obtient la suite d’isomorphismes suivant :

HppSL2pCq, π˚Fρq » HppSL2pCq, sl2pCqq » HppSUp2q, sl2pCqq

où sl2pCq désigne le faisceau constant associé à sl2pCq.
De plus, en utilisant le théorème des coefficients universel et l’identification SUp2q » S3, on a

HppSUp2q, sl2pCqq » HppSUp2q,Cq b sl2pCq » HppS3,Cq b sl2pCq

Dont on déduit l’annulation pour p “ 1 et p “ 2. Ce qui donne finalement

HipΓ, sl2pCqρq » HipMρ,Fρq, i “ 0, 1 et 2

Le plongement i de sl2pCq dans Hρ est invariant par l’action de SL2pCq et donne lieu à la suite exacte
de Γ-module suivante

0 Ñ sl2pCqρ Ñ Hρ Ñ Hρ{sl2pCqρ Ñ 0 (6.1)

La fonction ψ : Hρ Ñ sl2pCqρ définie par ψpF q “

ż

SUp2q

F |SUp2q dµ où µ est la mesure de Haar normalisée

(c’est-à-dire
ż

SUp2q

SUp2qdµ “ 1) vérifie pour tout X P sl2pCq, Ψ ˝ ipXq “

ż

SUp2q

Xdµ “ X Cette

application définit alors un scindage de la suite (6.1). On a alors que les applications

HipΓ, sl2pCqρq Ñ HipΓ,Hρq, i “ 0, 1 et 2

sont injectives [104].

Preuve de la théorème 6.1.1. Notons

hiΘ : RpΓqa Ñ N`, ρ ÞÑ dimHipMρ,Θρq

hiF : RpΓqa Ñ N`, ρ ÞÑ dimHipMρ,Fρq

Puisque la variété des représentations pointée en ρ0 est l’espace de Kuranishi de SL2pCq{Γ, la famille
tautologique Xa Ñ RpΓqa est complète en tous points dans un voisinage V0 de ρ0. Puisque la SL2pCq-
conjugaison induit un isomorphisme entre les variétés Mρ, la famille tautologique de déformations de Mρ

103



Chapitre 6 – Espace de Kuranishi de Mρ

pour ρ P V0 s’obtient comme pull-back de la famille tautologique restreinte à un sous-espace analytique
de V0 contenant ρ et localement transverse à l’orbite (par SL2pCq-conjugaison) de ρ. Par le calcul de la
dimension du groupe d’automorphismes (et donc de la dimension de l’orbite), ce sous espace à dimension
h1

F pρq. Remarquons que la famille semi-universelle, parmi les familles complètes, est caractérisée par le
fait que la dimension de sa base est minimale en ρ. On obtient alors que pour tout ρ P V0, h1

F pρq ě h1
Θpρq.

Mais l’injection de H1pMρ,Fρq dans H1pMρ,Θρq (lemme 17) nous donne l’inégalité inverse et on
déduit donc l’égalité h1

F pρq “ h1
Θpρq pour tout ρ P V0.

On considère maintenant la famille tautologique au dessus de RpΓqa,0. On sait [20] que pour tout
q ě 0, la fonction

ρ ÞÑ hqΘpρq ´ hq´1
Θ pρq ` ¨ ¨ ¨ ` p´1qqh0

Θpρq

est semi-continue supérieurement pour la topologie de Zariski analytique sur RpΓqa,0.
Par hypothèse, RpΓqa possède au moins un point réduit, alors l’ensemble des points non réduits est

un sous-espace analytique strict et RpΓqa possède alors un ouvert de Zariski de points lisses (et donc
réduits). Plaçons nous alors sur la partie lisse

`

RpΓqa,0
˘lisse de RpΓqa,0. Sur cet ouvert de Zariski, la

dimension de l’espace tangent est partout la même et la fonction

ρ ÞÑ h1
Θpρq ´ h0

Θpρq ´ dimTρRpΓqa

est semi-continue supérieurement. D’autre part, puisque

h1
F pρq “ dimH1pΓ, sl2pCqρq

“ dimZ1pΓ, sl2pCqρq ´ dimB1pΓ, sl2pCqρq

“ dimTρRpΓqa ´ p3 ´ h0
F pρqq

la fonction

ρ ÞÑ h1
Θpρq ´ h0

Θpρq ´ ph1
F pρq ` p3 ´ h0

F pρqqq

“ h1
Θpρq ´ h1

F pρq ´ 3 ` h0
F pρq ´ h0

Θpρq

est encore semi-continue supérieurement. De plus, h0
F pρq “ h0

Θpρq (par le calcul des champs de vecteurs
sur Mρ).

En particulier, sur
`

RpΓqa,0
˘lisse on a que

ϕ : RpΓqa,0 Ñ N, ρ ÞÑ h1
Θpρq ´ h1

F pρq

est une fonction semi-continue supérieurement et toujours positive puisque h1
Θpρq ě h1

F pρq. Or, d’après
les arguments précédents, il existe un ouvert Euclidien V0 sur lequel on a ϕpρq “ 0, on sait alors qu’il
existe un ouvert de Zariski analytique V le contenant, sur lequel cette fonction s’annule partout.

Corollaire 6.1.3. Soit R une composante connexe de RpΓqa. Si R contient un point ρ pour lequel
h1

F pρq “ h1
Θpρq et si R n’est pas composée que de points non-réduits, alors il existe un ouvert de Zariski

analytique de R sur lequel on a complétude de la famille tautologique.
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Démonstration. La preuve est la même que la preuve précédente en remplaçant RpΓqa,0 par R et en se
basant au point ρ.

6.2 Obstructions supérieures

On veut maintenant décrire les déformations de Mρ au dessus de pC, 0q et montrer qu’elles se ramène
toujours à des déformations au dessus de RpΓqa. Plus précisément,

Théorème 6.2.1. Pour toute représentation admissible ρ P RpΓqa telle que H1pΓ, sl2pCqρq » H1pΓ,Hρq,
la variété de représentation est complète.

Pour montrer cela, reprenons la construction faite dans le chapitre 1.
Pour tout ouvert U de Mρ, on considère les biholomorphismes

f : W Ñ W 1

où W,W 1 Ă Mρ ˆ C sont des ouverts contenants U ˆ t0u. On considère l’ensemble formé de tels biho-
lomorphismes qui présèrvent les fibres M ˆ tpu et tels que f |Mρˆt0u “ Id. On défini le faisceau Λρ sur
les ouverts U , ΛρpUq commme l’ensemble de ces biholomorphismes que l’on identifie deux à deux s’ils
coïncident sur un voisinage de U ˆ t0u. Nous l’avons vu, le groupe H1pMρ,Λρq s’identifie à l’ensemble
des classes de germes de déformations de Mρ paramétrées par pC, 0q.

En reprenant la filtration naturelle tΛρkuk du faisceau Λ et en posant Qρk “ Λρ{Λρk`1 on obtient la
suite exacte suivante :

0 Ñ Θρ Ñ Qρn`1 Ñ Qρn Ñ 0 (6.2)

Preuve du théorème 6.0.1. L’idée de la démonstration est la suivante. Soit X Ñ U Ă C une déformation
de Mρ au dessus d’un voisinage U de 0 dans C. Supposons que jusqu’à l’ordre n, cette déformation soit
équivalente à une déformation de Mρ induite par une déformation de la représentation ρ à l’ordre n.
Autrement dit, on suppose qu’il existe des cochaines tciu

n
i“1 telles que l’on ait le diagramme suivant

X f˚Mρnptq tMρnptqu

U Ă C HompΓ,SL2pCrts{ptn`1qqq

t ρnptq

„n

f

jusqu’à l’ordre n, où

ρnptq :“ ρc1,¨¨¨ ,cn ptq : γ ÞÑ exp
˜

n
ÿ

i“1
cipγqti

¸

ρpγq

On va montrer que dans cette situation, on peut trouver une cochaine cn`1 telle que le résultat puisse
s’étendre à l’ordre n`1 en considérant la déformation à l’ordre n`1 induite par ρn`1ptq :“ ρc1,¨¨¨ ,cn`1 ptq.

Commençons par formaliser ceci. Si il existe de telles cochaines à l’ordre n, on peut alors équiper
gn :“ sl2pCrts{ptn`1qq avec la structure de Γ-module donnée par Adρn

. On note gρn
n l’algèbre de Lie gn

munie de cette structure.

105



Chapitre 6 – Espace de Kuranishi de Mρ

En interprétant Bρn :“ H0pSL2pCq, π˚Qρnq comme un ensemble de n-jets, on obtient une injection de
Γ-modules gρn

n Ñ Bρn. Ces applications induisent un morphisme entre suites exactes :

0 sl2pCqρ gρn
n gρn

n´1 0

0 Hρ Bρn Bρn´1 0

On en déduit alors l’existence de morphismes entre les suites exactes longues associées et en particulier,
on a :

H1pΓ, sl2pCqρq H1pΓ, gρn
n q H1pΓ, gρn

n´1q H2pΓ, sl2pCqρq

H1pΓ,Hρq H1pΓ,Bρnq H1pΓ,Bρn´1q H2pΓ,Hρq

i1 i2 i3

δ

i4

De plus, puisque SL2pCq est une variété de Stein et que π˚Θρ est cohérent, nous avonsH1pSL2pCq, π˚Θρq “

0 (voir la preuve du théorème 6.1.2 pour plus de détails), ainsi

0 Ñ Hρ “ H0pSL2pCq, π˚Θρq Ñ Bρn Ñ Bρn´1 Ñ 0

On sait donc, par la théorème 4.1.11, que l’on a un morphisme entre les suites exactes longues associées
en cohomologie qui donne lieu au diagramme suivant :

H1pΓ,Hρq H1pΓ,Bρnq H1pΓ,Bρn´1q H2pΓ,Hρq

H1pMρ,Θρq H1pMρ, Q
ρ
nq H1pMρ, Q

ρ
n´1q H2pMρ,Θρq

≀ ≀ ≀ ≀

δ̌

En concaténant les deux diagrammes, on obtient finalement :

H1pΓ, sl2pCqρq H1pΓ, gρn
n q H1pΓ, gρn

n´1q H2pΓ, sl2pCqρq

H1pMρ,Θρq H1pMρ, Q
ρ
nq H1pMρ, Q

ρ
n´1q H2pMρ,Θρq

ri1 ri2 ri3

δ

ri4

δ̌

Soit maintenant θ P H1pMρ,Θρq l’image de l’application de Kodaira-Spencer appliqué à la famille
X Ñ U . On sait par [24] qu’il existe une suite d’éléments θk P H1pMρ, Q

ρ
kq qui sont contenus dans l’image

réciproque de θ dans H1pMρ, Q
ρ
kq et tels que δ̌pθkq “ 0. Et l’équivalence entre X Ñ U et la déformation

induite par ρnptq à l’ordre n se réécrit

ri2pCnk q “ θk, @1 ď k ď n

où Cnk P H1pΓ, gρn

k q est définit comme au chapitre 4 par Cnk pγq :“ pk
d

dt
pρnpγqq ρnpγ´1q avec pk : gρn

n Ñ

gρn

k est la projection naturelle. Et pour que l’on puisse étendre ce résultat à l’ordre n ` 1, il nous faut
montrer l’existence d’une cochaine cn`1 P C1pΓ, sl2pCqρq telle que

ri2pCn`1
k q “ θk, @1 ď k ď n
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L’existence d’une telle cochaine cn`1 est assurée par le fait que δpCnn q “ 0 (puisque δ̌pθnq “ 0) et par le
théorème 4.2.11.

Une condition suffisante est donc que ri2 soit surjectif pour tout n ě 1. Établissons ce fait récursivement.

Initialisation : Pour n “ 1, c’est la théorème 6.1.1. En effet le diagramme précédent devient :

H1pΓ, sl2pCqρq H1pΓ, gρ1
1 q H1pΓ, sl2pCqρq H2pΓ, sl2pCqρq

H1pMρ,Θρq H1pMρ, Q
ρ
1q H1pMρ,Θρq H2pMρ,Θρq

ri1 ri2 ri3

δ

ri4

δ̌

et cette proposition a déjà établi que ri1 “ ri3 sont des isomorphismes et ri4 est injectif. Le lemme
des quatre implique que ri2 est surjectif.

Hérédité : Supposons que ri2 : H1pΓ, gρn
n q Ñ H1pMρ, Qnρq soit surjectif. On a toujours que ri1 est un isomor-

phisme, ri4 est injectif. On conclut donc encore par le lemme des quatre que ri3 est surjectif.

On obtient alors une suite de cochaines tciu
8
i“1 qui nous donne une déformation formelle de ρ :

ρ8 : γ ÞÑ exp
˜

8
ÿ

i“1
cipγqti

¸

ρpγq

L’existence d’une solution convergente est donnée de la façon suivante. Soit xγ1, ¨ ¨ ¨ , γn|R1, ¨ ¨ ¨ , Rmy

est une présentation de Γ, alors la variété des représentations RpΓq s’identifie avec les n-uplet px1, ¨ ¨ ¨ , xnq

de SL2pCqn vérifiant Ripx1, ¨ ¨ ¨ , xnq “ Id pour i “ 1, ¨ ¨ ¨ ,m. On dispose donc d’une description de RpΓq

par un système de d’équations polynomiales F tel que

RpΓq » V pFq “ tx P SL2pCqn Ă C4n| Fpxq “ 0u

La solution formelle trouvée précédemment correspond donc à un élément xptq P C4nrrtss telle que
Fpxptqq “ 0.

Par le théorème 1.4.2 (théorème d’Artin sur la convergence de solutions formelles), on sait que pour
tout N P N, il existe x̂ptq P C4nttu telle que x̂ptq ” xptq mod tN .

On conclut que toute déformation de la structure complexe de Mρ paramétrée par pC, 0q s’obtient
par pullback sur la variété des représentations. Cela montre que la variété des représentations est com-
plète en chaque point correspondant à une représentation admissible et a fortiori conclu la preuve du
théorème 6.0.1 (théorème de complétude).

6.3 Application de Kodaira-Spencer au dessus de RpΓq

Par complétude de la famille tautologique au dessus de la variété des représentations, nous savons
que l’application de Kodaira-Spencer associée à la famille tautologique au dessus de RpΓqa est surjective
en chaque point. Cependant, dans cette section nous donnons une forme explicite de cette application et
montrons le résultat suivant :
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Proposition 6.3.1. L’application de Kodaira-Spencer associée à la famille tautologique au dessus de
V Ă RpΓqa,0 pointée en ρ P V est donnée par la composition d’applications :

TZarρ RpΓqa » Z1pΓ, sl2pCqρq
p

ÝÑ H1pΓ, sl2pCqρq » H1pΓ,Hρq » H1pMρ,Θρq

où p : Z1pΓ, sl2pCqρq Ñ H1pΓ, sl2pCqρq est la projection d’un cocycle sur sa classe de cohomologie.

Démonstration. Les rappels de la sous-section 1.3.2 affirment que l’application de Kodaira-Spencer est
la première application connectante de la suite exacte longue obtenue à partir de la suite fondamentale
associée à la déformation p2 : Xa Ñ V où X est le quotient de SL2pCq ˆ V par l’action de Γ donnée par :

Γ ˆ SL2pCq ˆ V Ñ SL2pCq ˆ V, pγ, x, ρq ÞÑ pρpγq´1xγ, ρq

Reprenons les notations du chapitre 1 de la section concernant la suite fondamentale. L’annulation du
groupe H1pSL2pCq, π˚

ρΘρq implique l’existence d’un morphisme entre la suite exacte longue associée à la
suite fondamentale :

0 Ñ Ȟ0pMρ,Θρq Ñ Ȟ0pMρ, Ψ|Mρ
q Ñ Ȟ0pMρ, TρRpΓqq » TρRpΓq

δ̌˚

ÝÑ Ȟ1pMρ,ΘMρ
q Ñ ¨ ¨ ¨

et la suite exacte longue

0 H0pΓ,Hρq H0pΓ, Ȟ0pSL2pCq, π˚ Ψ|Mρ
qq

TρRpΓq H1pΓ,Hρq ¨ ¨ ¨
δ˚

En particulier, l’application de Kodaira-Spencer se déduit (via l’isomorphisme entre cohomologie de Γ
et cohomologie de Čech de Mρ) de l’application connectante de cette deuxième suite exacte. Nous nous
proposons alors d’expliciter cette application.

Soit c P Z1pΓ, sl2pCqρq » TρRpΓq. Soit pv, cq P H0pSL2pCq, π˚ Ψ|Mρ
q (de sorte que πpv, cq “ p2pv, cq “

c), où v est une application holomorphe de SL2pCq dans sl2pCq.
Écrivons d’abord l’action de Γ sur H0pSL2pCq, π˚ Ψ|Mρ

q. Pour tout élément γ P Γ, posons

Gγ : SL2pCq ˆ RpΓqa Ñ SL2pCq ˆ RpΓqa

px, ρq ÞÑ pρpγ´1qxγ, ρq

Prenons x0 P SL2pCq et ε ą 0. Soit ϕx0 :s ´ ε, εrÑ SL2pCq ˆ RpΓqa un chemin passant par px0, ρq P

SL2pCq ˆ RpΓqa donné par ϕptq “ pxptq, etcρq où etcρ : γ ÞÑ etcpγq`opt2qρpγq et tel que d

dt
ϕptq|t“0 “ pv, cq.

On a alors

pGγq˚ϕx0 p0q “
d

dt
Gγ ˝ ϕx0 ptq|t“0

“
d

dt

´

etcpγqρpγq´1xptqγ, etcρ
¯
ˇ

ˇ

ˇ

t“0

“
`

cpγq ` ρpγq´1vρpγq, c
˘
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Alors, l’image de c par δ˚ est représentée par la classe de cohomologie de d0pv, cq. On a donc δ˚pv, cq “

pGγq˚pv, cq ´ pv, cq

δ˚pv, cq : Γ Ñ Hρ, γ ÞÑ cpγq ` ρpγq´1vρpγq ´ v

De plus, puisque ρ P V on sait que H1pΓ,Hρq » H1pΓ, sl2pCqρq. Il existe donc un élément X P sl2pCq tel
que cpγq ` ρpγq´1vρpγq ´ v “ cpγq ` ρpγq´1Xρpγq ´X. On a alors

rδ˚pv, cqs “ rc` cX s “ rcs

où cX est le cobord associé à X P sl2pCq, c’est-à-dire définit par cXpγq “ ρpγq´1Xρpγq ´X.

Remarque. Remarquons au passage que remplacer c par un cocycle lui étant cohomologue ne change pas
l’image de l’application de Kodaira-Spencer. Autrement dit, un cocycle obtenu comme vecteur tangent à
l’orbite de ρ est envoyé sur KSpρq “ 0 P H1pMρ,Θρq.

6.4 Description des espaces de Kuranishi

On aimerait pouvoir donner une description plus précise de la géométrie des espaces de Kuranishi des
variétés Mρ. La principale obstruction à cette réalisation est l’existence de représentations dont l’orbite
n’est pas fermée. De plus, l’existence de « sauts »de la fonction ρ ÞÑ h0pρq est clairement une difficulté
supplémentaire. Dans cette section, nous donnons d’abord un corollaire immédiat au théorème 6.0.1 dans
le cas général puis nous esquivons les difficultés en supposant que le premier nombre de Betti de Γ est 1.

6.4.1 Cas général

Corollaire 6.4.1. Soit Γ un sous-groupe discret co-compact dans SL2pCq et ρ P V Ă RpΓqa. Alors,
tout espace C-analytique Z contenant ρ et localement transverse aux SL2pCq-orbites définit (en tant que
germe) l’espace de Kuranishi de Mρ.

Remarque. Si ρ est un point singulier, par le théorème d’Hironaka (voir [3]) il existe une désingularisation
π : W Ñ RpΓqa de RpΓqa en ρ dont on sait que π est propre. On choisit alors une section transverse rZ

à π´1pOρq dans W et on considère Z :“ π
´

rZ
¯

.

La preuve découle immédiatement du théorème 6.0.1 de complétude.

Corollaire 6.4.2. Soit Γ un sous-groupe discret co-compact dans SL2pCq et ρ P RpΓqa une représentation
irréductible. Alors, l’espace de Kuranishi de Mρ est donné par le germe de la variété de caractère X pΓq

pointée en ρ.

Démonstration. La variété de caractère restreinte aux caractères irréductibles est un espace d’orbites. Le
théorème de complétude permet de conclure.

6.4.2 Section transverse dans le cas b1pΓq “ 1

Nous commençons par caractériser les représentations à images abéliennes afin de construire explici-
tement des sections localement transverses aux orbites et donc les espaces de Kuranishi correspondants.

109



Chapitre 6 – Espace de Kuranishi de Mρ

Notons RpΓqab le sous-ensemble de RpΓq constitué des représentations abéliennes (c’est à dire dont
l’image de Γ par une telle représentation est un sous-groupe abélien de SL2pCq).

On sait par la théorème 5.3.9 que dans le cas où b1pΓq “ 1, RpΓqab et RpΓqa coïncident sur la
composante connexe de ρ0.

Pour le reste de cette section, fixons un sous-groupe discret co-compact Γ de SL2pCq de premier
nombre de Betti b1pΓq “ 1 “ dimH1pMρ,Qq “ rkpπpMρqq “ rkpΓabq ainsi qu’une présentation de son
abélianisé :

Γab “ xγ0, ¨ ¨ ¨ , γn | γdi
i “ Id, i “ 1, ¨ ¨ ¨ , n, rγi, γjs “ Id, i, j “ 0, ¨ ¨ ¨ , ny (6.3)

avec di P N˚.
On sait que toute représentation à image abélienne se factorise par Γab, on obtient alors qu’une

représentation ρ P RpΓqab est déterminée par

ρpΓq “ xρpγ0q, ¨ ¨ ¨ , ρpγnq | ordpρpγiqq|di, i “ 1, ¨ ¨ ¨ , n, rρpγiq, ρpγjqs “ Id, i, j “ 0, ¨ ¨ ¨ , ny

On pose ki :“ ordpρpγiqq.
Remarquons que la surjection Γ Ñ Z donnée par l’abélianisation induit l’injection SL2pCq » RpZq Ñ

RpΓq.

Proposition 6.4.3. L’image de l’injection ϕ : RpZq Ñ RpΓq correspond à RpΓq0.

Démonstration. Par le théorème 5.3.9, on sait que sur la composante RpΓq0, toutes les représentations
sont à images abéliennes et sont déterminées par leurs images sur les γi, i “ 0, ¨ ¨ ¨ , n.

Commençons par remarquer que pour tout i “ 1, ¨ ¨ ¨ , n les fonctions

Tri : RpΓq Ñ C, ρ ÞÑ Trpρpγiqq

sont continues et, par unipotence des γi, i “ 1, ¨ ¨ ¨ , n, elles satisfont Tripρq “ 2 cospαq où α est une
racine primitive ki-ième de l’unité. Elle sont donc à images discrètes et localement constantes. Sur la
composante connexe RpΓq0, une représentation ρ est donc entièrement déterminée par son image de
γ0 et vérifie ρpγiq “ Id, i “ 1, ¨ ¨ ¨ , n. Autrement dit, l’injection Z ãÑ Γab induit un isomorphisme
RpZq Ñ RpΓq0 Ă RpΓqab. On est donc ramené à étudier RpZq.

De plus, le critère de propreté de Kassel permet, dans ce cas, des calculs explicites. Reprenons les
notations de la section 3.3.

Proposition 6.4.4. Soient α P R˚
`, on pose Λx l’ouvert de SL2pCq défini par

Λγ0 :“ tX P SL2pCq | λpXq ă xu

où λpXq est la longueur de translation de X. Il existe α P R˚
` tel que l’image de Λα par l’injection

ϕ : SL2pCq » RpZq Ñ RpΓq correspond à l’ouvert V Ă RpΓqa X RpΓq0.

Démonstration. La proposition précédente affirme que ϕpSL2pCqq “ RpΓq0. Soit X P SL2pCq et ρ est
une représentation déterminée par ρpγ0q “ X et ρpγiq “ Id pour tout i “ 1, ¨ ¨ ¨ , n, alors, par le critère
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d’admissibilité de Guéritaud-Kassel, ρ est admissible si, et seulement si, le ratio des longueurs de
translation C 1pρq “ sup

γPΓ

λpρpγqq

λpγq
soit strictement plus petit que 1. Puisque λpρpγqq ne dépend que de

λpXq, on peut le choisir suffisamment petit pour que C 1pρq ă 1. On note alors α le suprémum des
nombres réels positifs qui vérifient lpXq ă α ùñ C 1pρq ă 1.

En utilisant la forme de Jordan de la matrice X, on obtient alors le corollaire suivant :

Corollaire 6.4.5. Soit X P Λγ0 et ρ :“ ϕpXq.

‚ Si X est conjuguée à une matrice de la forme
˜

z 0
0 z´1

¸

avec z R t0,˘1u et tel que ρ P V alors, la

famille de Kuranishi de Mρ est donnée par le germe de la famille

tMηε
| ε P Du

D

pointée en 0, où ηε “ ϕ

˜˜

z ` ε 0
0 pz ` εq´1

¸¸

.

‚ Si X est conjuguée à une matrice de la forme
˜

˘1 1
0 ˘1

¸

et tel que ρ P V alors, la famille de

Kuranishi de Mρ est donnée par le germe de la famille

tMζδ
| δ P Du

D

pointée en 0, où ζε “ ϕ

˜˜

˘1 ` δ 1
0 p˘1 ` δq´1

¸¸

.

Remarque. Puisque les orbites des représentations ρ˘ définies par ρ˘pγ0q “

˜

˘1 1
0 ˘1

¸

ne sont pas

fermées, la variété de caractères de Z n’est pas partout un espace d’orbites. Cependant l’application

ϕ : RpZq ÞÑ C˚{ „, ρ ÞÑ σpρpγ0qq

où σpgq est une valeur propre de g et g „ g´1, est un espace d’orbites sur ϕ´1pC˚zt˘1uq. Ce quotient
catégorique est en fait équivalent à la variété de caractères :

RpΓq0 » RpZq X pZq

C˚{ „

π

ϕ
f

où fpgq “ g ` g´1 (voir l’théorème 4.3.17).
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Chapitre 6 – Espace de Kuranishi de Mρ

Reprenons la présentation (6.3) de Γab. Soient i “ 1, ¨ ¨ ¨ , n et α un diviseur de di et soit ρj,α la
représentation à image abélienne déterminée par

ρj,αpγjq “

˜

e
2iπα

dj 0
0 e

´ 2iπα
dj

¸

et ρj,αpγiq “ Id, pour tout i ‰ j. Puisque cette représentation est à image compacte, elle est admissible
et on sait qu’il existe un ouvert Uj,α Ă RpΓqa qui contient ρi,α.
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Chapitre 7

CHAMP DE TEICHMÜLLER DE SL2pCq{Γ

Nous arrivons maintenant à la construction de l’ouvert du champ de Teichmüller de la variété
SL2pCq{Γ correspondant à l’ouvert des représentations V Ă RpΓqa. Dans le chapitre précédent, nous

avons montré la complétude de la famille tautologique au dessus de cet ouvert V Ă RpΓqa puis montré
que le groupe d’isotropie d’un point du champ de Teichmüller (c’est-à-dire le groupe Aut1

pMρq) est
donné par le centralisateur de ρpΓq dans SL2pCq. On va donc naturellement considérer le champ quotient
de la variété des représentations par l’action de conjugaison par SL2pCq et montrer qu’il s’agit bien d’un
sous-champ du champ de Teichmüller. Les résultats de Kassel énoncés dans le chapitre 4 permettront
d’affirmer que ce sous-champ, que l’on appellera naturellement champ des caractères admissibles, est
ouvert dans le champ de Teichmüller.

Par ailleurs, nous proposons de souligner l’intérêt qu’apporte le point de vue champêtre en comparant
ce champ des caractères avec la version plus classique du quotient GIT revue dans le chapitre 4. Nous
finirons ce chapitre par quelques résultats sur la fonctorialité de la construction de ce champ.

7.1 Champ des caractères

On se place au dessus du site AnC. Comme précédemment, notons X :“ SL2pCq ˆ RpΓq.

Définition 7.1.1. Le groupoïde des caractères est le groupoïde de translation

X ˆp2,RpΓq,ι X X RpΓq X Xm

p2

ι u i

où les cinq applications pp2, ι,m, u, iq sont définies de la façon suivante

‚ l’application source est la projection sur le deuxième facteur

p2 : SL2pCq ˆ RpΓq Ñ RpΓq, pX, ρq ÞÑ p2pX, ρq “ ρ

‚ l’application cible est la SL2pCq-conjugaison sur RpΓq

ι : SL2pCq ˆ RpΓq Ñ RpΓq, pX, ρq ÞÑ ιX ˝ ρ
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‚ l’application de composition est donnée par la multiplication de SL2pCq

m : X ˆs,RpΓq,t X Ñ X, ppX, ρq, pY, ιX ˝ ρqq ÞÑ pY X, ρq

‚ l’application identité
u : RpΓq Ñ X, ρ ÞÑ pId, ρq

‚ et l’application inverse correspond à l’inversion dans SL2pCq

i : SL2pCq ˆ RpΓq Ñ SL2pCq ˆ RpΓq, pX, ρq ÞÑ pX´1, ρq

Remarque. La commutativité des diagrammes du théorème 2.2.5 à déjà été faite dans l’théorème 2.2.8.

De la même façon, on définit le groupoïdes des caractères admissibles. Notons Xa le sous-espace de X

donné par Xa :“ SL2pCq ˆ RpΓqa.

Définition 7.1.2. Le groupoïde des caractères admissibles est le groupoïde de translation

Xa ˆp2,RpΓqa,ι X
a Xa RpΓqa Xa Xam

p2

ι u i

où les cinq applications pp2, ι,m, u, iq sont les restrictions à RpΓqa des flèches vues précédemment.

Définition 7.1.3. Le champ des caractères (resp. caractères admissibles) est la champification de la CFG
associée au groupoïde des caractères (resp. caractères admissibles).

Remarque. Un pré-champ donné par un groupoïde de translation n’est en général pas un champ. Puisque
nous voulons pouvoir recoller les SL2pCq-fibrés plus tard, il est naturel de champifier cette CFG.

En utilisant la définition dans le théorème 2.2.40, on peut reformuler cette définition en disant que le
champ des caractères (resp. des caractères admissibles) est le champ quotient

rRpΓq{ SL2pCqs, presp. rRpΓqa{ SL2pCqsq

Même si nous avons déjà détaillé les objets et morphismes d’un tel champ, il est utile de le revoir ici.
Un objet du champ rRpΓqa{ SL2pCqs est la donnée d’un SL2pCq-fibré principal P Ñ U au dessus d’un
espace C-analytique U et d’une application SL2pCq-équivariante f : P Ñ RpΓqa. Remarquons que l’on
peut, à partir d’un tel objet, reconstruire une déformation de SL2pCq{Γ. Si Uα est un ouvert de U et
Ψα : UαˆSL2pCq Ñ p´1pUαq est une trivialisation de P , alors l’application f ˝Ψα : UαˆSL2pCq Ñ RpΓqa

permet de définir une relation d’équivalence „f sur Uα ˆ SL2pCq via

pu, xq „f pu, yq ô Dγ P Γ, y “ pf ˝ Ψpu, xqpγ´1qqxγ

Le quotient Uα ˆ SL2pCq{ „f muni de la projection sur U admet une structure de famille. De plus, la
SL2pCq-équivariance de f et de Ψ permettent de vérifier que les changements de cartes préservent les fibres
à biholomorphismes près. On obtient de cette façon une famille sur U dont les fibres sont biholomorphes
à Mfpp´1puqq pour tout u P U .

Il est facile de vérifier que les morphismes entre ces familles correspondent aux biholomorphismes de
familles.

114



7.1. Champ des caractères

7.1.1 Champ de Teichmüller de SL2pCq{Γ

Reprenons les notations du chapitre 2. Soit IpMq l’ensemble des structures complexes sur M “

SL2pCq{Γ. On veut définit une application i : RpΓqa Ñ IpMq qui envoie une représentation sur la
structure complexe de Mρ. L’application i se définie de la façon suivante. Soit ρ une représentation
admissible et considérons de fibré des repères F pMdiff

ρ q de Mdiff
ρ , où Mdiff

ρ est la variété C8 sous-
jacente à Mρ. Les points au dessus d’un point x P Mdiff

ρ sont identifiés à des isomorphismes linéaires
R6 Ñ TxMdiff

ρ . Notons que le fibré tangent TMρ (voir (5.1)) admet une structure naturelle de sous-
fibré de F pMdiff

ρ q par isomorphismes C-linéaires C3 Ñ TxMdiff
ρ et la réduction du groupe structural

correspondante définie un opérateur Jρ du fibré qui correspond exactement à la structure complexe de
Mρ. On définit alors i par i : ρ ÞÑ Jρ.

Théorème 7.1.4. Le champ rV { SL2pCqs des caractères admissibles restreint à V est un sous-champ
(ouvert) du champ de Teichmüller de M.

Démonstration. Le théorème 6.0.1 permet d’affirmer l’existence d’un ouvert V 1 Ă IpMq de structures
complexes Mρ données par des représentations ρ P V . On sait donc que localement, toute déformation
X Ñ B dans le champ de Teichmüller TV a pMq peut être vue comme un SL2pCq-fibré principal P Ñ B avec
une application SL2pCq-équivariante p : P Ñ V Ă RpΓqa, qui est un élément du champ des caractères.

Montrons maintenant que le champ des caractères admissibles est une sous-catégorie pleine du champ
de Teichmüller. Localisons l’ouvert de Zariski V , c’est-à-dire remplaçons la par un recouvrement d’ouverts
Ů

α Uα et prenons Uα et Uβ deux tels ouverts qui s’intersectent non trivialement et tels que les familles
tautologiques π : XUα

Ñ Uα et π1 : XUβ
Ñ Uβ soient reliées par des morphismes f : Uα Ñ Uβ et

F : X|Uα
Ñ X|Uβ

dans le champ de Teichmüller.

XUα XUβ

Uα Uβ

F

π π1

f

Quitte à raffiner la localisation, on peut supposer Uα et Uβ suffisamment petits pour que les deux familles
soient reliées (sur l’intersection Uα X Uβ) par l’action d’un élément g P Aut1

pMq donc par un élément
g P SL2pCq par la théorème 5.4.5. On obtient alors une application rF : Uα X Uβ Ñ SL2pCq telle que
F pxq “ ι

rF pπpxqq
pxq.

Cette application rF satisfait p2 ˝ p rF , Idq “ Id et ι˝ p rF , Idq “ ι
rF où p2 et ι sont les applications sources

et cibles du groupoïde SL2pCq ˆ RpΓqa Ñ RpΓq.

On déduit alors facilement le corollaire suivant :

Corollaire 7.1.5. Le groupoïde
SL2pCq ˆ V

ι
Ñ
p2
V

est un atlas de TV pMq.

Remarque. On connaît des exemples explicites de groupes Γ (avec bpΓq ě 1) pour lesquels la variété
des représentations associée n’est pas séparée. Pour de tels Γ, il existe donc une suite de structures
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complexes tJnu convergente vers J8 telle que Jn et Jm sont biholomorphes pour tout n et m P N
et ppSL2pCq{Γq

diff
, J8q n’est biholomorphe à aucune variété ppSL2pCq{Γq

diff
, Jn pour n’importe quel

n ă `8.

7.1.2 Champ de modules de Riemann de SL2pCq{Γ

Rappelons que la rigidité de Mostow permet de décrire les automorphismes de Γ : si θ P AutpΓq

alors il existe une unique paire pϵ, ζq P HompΓ, t˘ Iduq ˆ SL2pCq, modulo le centre de SL2pCq, tel que
θpγq “ ϵpγqζγζ´1.

Théorème 7.1.6. Le sous-champ rV { ppAutpΓq ˆ SL2pCqq{Γqs est un sous-champ ouvert du champ de
modules de Riemann de SL2pCq{Γ, où l’action est donnée par

pσ, ιq : AutpΓq ˆ SL2pCq ˆ RpΓqa Ñ RpΓqa, pσ, ιqpε.ιζ , h, ρq “ ε.ιh ˝ ρ ˝ ε.ιζ

et se factorise en une action de pAutpΓq ˆ SL2pCqq{Γ sur RpΓqa où Γ agit via γ 9pε.ιζ , gq “ pιγ ˝

ε.ιζ , gρpγq´1q.

Démonstration. La construction est similaire au champ de Teichmüller et le groupe d’isotropie d’un point
ρ est bien isomorphe au groupe d’automorphisme de Mρ, que nous avions appelé Gρ{Γ.

En utilisant la construction faite dans [74], on a que le groupoïde de Lie

pAutpΓq ˆ SL2pCqq {Γ ˆ V
pσ,ιq
Ñ
p3

V

est un atlas du champ de modules de Riemann.

7.2 Champs versus théorie des invariants géométriques

Une question assez naturelle est de savoir ce que l’on a gagné à travailler avec le champ quotient
plutôt qu’avec le quotient affine π : RpΓq Ñ RpΓq{{ SL2pCq construit au chapitre 3.

Une première différence entre la version champêtre et la version GIT est celle de l’espace tangent.
Le lien entre l’espace tangent à la variété des caractères et le groupe H1pΓ, sl2pCqρq n’est pas encore
pleinement compris (voir par exemple [90, Question 56]). Cela est du au simple fait que l’espace tangent
d’un quotient n’est pas toujours le quotient des espaces tangents. Dans notre cas, on a pas toujours égalité
entre TρRpΓq{{ SL2pCq et TρRpΓq{TρOpρq “ Z1pΓ, sl2pCqρq{B1pΓ, sl2pCqρq. Au contraire, dans la version
champ, on a :

Corollaire 7.2.1. Le champ tangent au champ des caractères au point ρ P RpΓq est isomorphe à
H1pΓ, sl2pCqρq.

Démonstration. Rappelons que le champ tangent à un groupoïde G Ñ G0 est le champ donné par le

116



7.2. Champs versus théorie des invariants géométriques

groupoïde TG Ñ TG0. On a alors

TId,ρrRpΓq{ SL2pCqs “
“

sl2pCq ˆ Z1pΓ, sl2pCqρq Ñ Z1pΓ, sl2pCqρq
‰

“
“

Z1pΓ, sl2pCqρq{B1pΓ, sl2pCqρq
‰

“H1pΓ, sl2pCqρq

Considérons le champ X pΓq (au dessus du site AnC) associé à l’analytifié du schéma affine RpΓq{{ SL2pCq,
c’est-à-dire la catégorie fibrée en groupoïdes dont les objets sont les U Ñ X pΓq avec U un espace C-
analytique et les morphismes sont les diagrammes commutatifs

U U 1

X pΓq

avec U et U 1 des objets de AnC.
Et regardons le foncteur

F : rRpΓqa{ SL2pCqs Ñ X pΓq

défini sur les objets par

F :

¨

˚

˚

˚

˝

P RpΓqa

U

p

rf

˛

‹

‹

‹

‚

ÞÝÝÑ

´

U
f

Ñ X pΓq

¯

avec f ˝ p “ π ˝ rf . Et définit sur les morphismes par

F :

¨

˚

˚

˝

P P 1

U U 1

p p1

ϕ

˛

‹

‹

‚

ÞÝÝÝÑ

¨

˚

˚

˚

˝

U U 1

X pΓq

ϕ

˛

‹

‹

‹

‚

On sait par le théorème 4.3.13 que les C-points de RpΓq{{ SL2pCq sont donnés par les caractères des
représentations ρ P RpΓq (c’est-à-dire la fonction χρ : Γ Ñ C définie par χρpγq “ Trpρpγqq).

Proposition 7.2.2. Soit χρ le caractère d’une représentation ρ P RpΓq. La fibre de F au dessus de χρ,
noté F´1pχρq, est catégoriquement équivalente au champ

”

π´1pχρq
ˇ

ˇ

RpΓqa { SL2pCq

ı

.

Remarque. Le critère d’admissibilité de Kassel s’exprime avec les longueurs de translation d’une repré-
sentation ρ, donc sur le caractère associé χρ. On a alors que si ρ P RpΓqa alors π´1pχρq Ă RpΓqa. On
peut donc dans la proposition (ainsi que dans la preuve) précédente retirer la restriction π´1pχρq

ˇ

ˇ

RpΓqa

qui est triviale.

Démonstration. La fibre du foncteur F au dessus du point χρ est définie par le produit fibré

tχρu ˆ
X pΓq

rRpΓqa{ SL2pCqs
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Considérons le foncteur

G :
“

π´1pχρq{ SL2pCq
‰

Ñ tχρu ˆ
X pΓq

rRpΓqa{ SL2pCqs

définit par G “ pF, Idq, c’est-à dire par

G

¨

˚

˚

˚

˝

P π´1pχρq

U

p

rf

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

F

¨

˚

˚

˚

˝

P π´1pχρq

U

p

rf

˛

‹

‹

‹

‚

,

P π´1pχρq

U

p

rf

˛

‹

‹

‹

‚

Or

F

¨

˚

˚

˚

˝

P π´1pχρq

U

p

rf

˛

‹

‹

‹

‚

“ U
f

Ñ X pΓq

avec f ˝ p “ π ˝ rf . Donc f ˝ ppP q “ fpUq “ χρ.
Alors, ce foncteur vérifie G ˝ P2 “ Id et P2 ˝ G “ Id où P2 est le foncteur naturel qui projette

tχρu ˆ
X pΓq

rRpΓqa{ SL2pCqs sur le deuxième facteur.

De manière plus générale, on a

Proposition 7.2.3. Pour tout espace C-analytique U f
Ñ X pΓq, la fibre de F au dessus de U est équiva-

lente à rπ´1pfpUqq{ SL2pCqs.

Démonstration. La preuve est analogue à la preuve précédente. On a toujours

tU
f

Ñ X pΓqu ˆ
X pΓq

rRpΓqa{ SL2pCqs » rptU
f

Ñ X pΓqu ˆ
X pΓq

RpΓqaq{ SL2pCqs

et le produit fibré tU
f

Ñ X pΓqu ˆ
X pΓq

RpΓqa est évidemment isomorphe (comme espace C-analytique) à

π´1pfpUqq.

Remarque. Les représentations dans RpΓq à orbites non-fermées sont, à conjugaison près, les représenta-
tions de Γ à image dans AffpCq.

7.2.1 Point de vue algébrique

Nous l’avons vu, le sous-ensemble RpΓqa des représentations admissibles ne définit pas en général un
ouvert de Zariski (sauf dans le cas élémentaire b1pΓq “ 0) et nous ne pouvons donc pas construire le
champ quotient correspondant dans une catégorie algébrique. Nous pouvons cependant définir le champ
quotient rRpΓq{ SL2pCqs de la même façon que précédemment mais au dessus du site Sch. Nous laissons
le soin au lecteur d’adapter les définitions dans ce contexte.
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Avec ces considérations, il est intéressant de savoir comment ce comporte le foncteur

F : rRpΓq{ SL2pCqs Ñ X pΓq

entre champs au dessus du site Sch.
Nous avons évidemment le résultat analogue à la proposition précédente :

Proposition 7.2.4. Pour tout schéma U f
Ñ X pΓq, on a l’équivalence de catégorie

tU
f

Ñ X pΓqu ˆ
X pΓq

rRpΓq{ SL2pCqs »
“

π´1pfpUqq{ SL2pCq
‰

On rappelle qu’un espace de module grossier associé à un champ algébrique X est la donnée d’un
schéma M et d’un morphisme ϕ : X Ñ M tel que pour tout corps algébriquement clos k, les classes
d’isomorphismes d’objets de XpSpecpkqq sont en bijection avec MpSpecpkqq et tel que cette solution soit
universelle (tout autre morphisme de champs X Ñ N , avec N un autre schéma, se factorise sur ϕ). On
peut déduire des considérations du chapitre 4 la proposition suivante :

Proposition 7.2.5. Le foncteur
F : rRpΓq{ SL2pCqs Ñ X pΓq

est la projection sur l’espace de modules grossier.

De plus, il est bien connu que le sous-ensemble des représentations irréductibles RpΓqirr est un ouvert
de Zariski dans RpΓq et le quotient GIT X irrpΓq correspondant est un espace d’orbites. On a donc le
résultat suivant :

Proposition 7.2.6. La restriction du foncteur F

F : rRpΓqirr{ SL2pCqs Ñ X irrpΓq

est un isomorphisme de champ.

7.3 Fonctorialité

Étant donné un C8-difféomorphisme entre deux variétés compactes M et N admettant toutes deux
une structure complexe, il est une question assez naturelle de savoir comment sont « reliés »les espaces
de Teichmüller T pMq et T pN q. Dans le cas que nous avons considéré jusque-là, un exemple facile à
construire est donné par les variétés SL2pCq{Γ et SL2pCq{Γ1 où Γ1 est un sous-groupe d’indice fini dans
Γ. L’intérêt de cette construction est justifiée par les résultats suivants :

Proposition 7.3.1 (Ghys Théorème 5.7 [31]). Soient Γ1 et Γ2 deux sous-groupes discrets co-compacts
de SL2pCq et ρi P RpΓiq, i “ 1, 2. Alors, toute application holomorphe surjective de M1 vers M2 est un
revêtement, où Mi correspond au quotient de SL2pCq par l’action de Γi via ρi pour i “ 1, 2.

De plus, il est bien connu que les classes d’isomorphismes de revêtements d’une variété X sont en
bijection avec les classes d’équivalence (par conjugaison) de sous-groupes de π1pXq. On peut même raffiner
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ce résultat et résumer la situation par le schéma suivant :

tRevêtements de Xu { „
1:1

ÐÑ tSous-groupes de π1pXqu { »

tRevêtements finis d’ordre n de Xu { „
1:1

ÐÑ tSous-groupes d’indice n de π1pXqu { »
"

Revêtements Galoisiens finis
d’ordre n de X

*

{ „
1:1

ÐÑ

"Sous-groupes normaux d’indice
n dans π1pXq

*

{ »

On a donc le résultat suivant

Théorème 7.3.2. Soient Γ1 et Γ2 deux sous-groupes discrets co-compacts de SL2pCq. Alors, toute ap-
plication holomorphe surjective de SL2pCq{Γ1 vers SL2pCq{Γ2 induit un foncteur Res (resp. Resa) les
champs de caractères (resp. admissibles)

rRess : rRpΓ2q{ SL2pCqs Ñ rRpΓ1q{ SL2pCqs

presp. rResas : rRpΓ2qa{ SL2pCqs Ñ rRpΓ1qa{ SL2pCqsq

Démonstration. Par la proposition précédente, une application holomorphe surjective entre ces deux
variétés est un revêtement. Comme nous l’avons remarqué plus haut, les revêtements à isomorphismes
près de SL2pCq{Γ2 sont en bijection avec les sous-groupes, à conjugaison près, de Γ2. Il existe donc
Γ1

1 ă Γ2 tel que Γ1
1 est isomorphe à Γ1. Par rigidité de Mostow (en projetant sur PSL2pCq puis en

relevant à SL2pCq), on sait qu’il existe ε : Γ1 Ñ t˘ Idu et g P SL2pCq tels que Γ1
1 “ ε.ιgpΓ1q. L’inclusion

de Γ1
1 dans Γ2 induit un morphisme de restriction

Res : RpΓ2q Ñ RpΓ1
1q

Cette application commute évidemment à l’action de SL2pCq. De plus, l’isomorphisme que réalise ε.ιg
entre Γ1 et Γ1

1 induit un isomorphisme entre les variétés de représentations

Hompε.ιg,SL2pCqq : RpΓ1
1q Ñ RpΓ1q

En composant cet isomorphisme et l’application de restriction, on obtient le résultat.
Pour le cas des variétés de représentations admissibles, il est facile de voir que la restriction d’une

représentation admissible sera aussi une représentation admissible. En effet, une fonction f : H3 Ñ

H3 pj, ρq-équivariante k-Lipschitzienne sera aussi pj|Γ1
1
, ρ|Γ1

1
q-équivariante avec la même constante de

Lipschitz.
Réciproquement, si ρ|Γ1 est admissible alors ρ l’est aussi [42, lemme 4.4].

Remarque. On aurait envie de faire la même construction pour l’espace de modules de Riemann, cependant
l’application de restriction ne définit pas, a priori, un isomorphisme au niveau des groupes des difféotopies
(s’ils sont bien égaux à AutpΓq{Γ).
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EXEMPLES

L’application des résultats présents dans cette thèse, sur des exemples concrets, est une tâche re-
lativement ardue pour plusieurs raisons et il est important de comprendre ces difficultés pour que la
construction faite dans la première partie de ce chapitre apparaisse naturellement. Pour donner explici-
tement des exemples qui mettent en lumière le gain de cette thèse par rapport aux travaux de [31] nous
avons évidemment besoin de trouver un sous-groupe discret co-compact et sans torsion dans SL2pCq ainsi
qu’une présentation de celui-ci. Mais, plus la présentation est compliquée, moins le critère d’admissibilité
sera évident. Puisque le premier nombre de Betti est, comme la théorème 5.3.7 le suggère, un « indica-
teur »de la complexité de la géométrie de la variété des représentations, il est assez naturel de vouloir
regarder des exemples avec des petits premiers nombres de Betti.

Une approche possible, qui permettrai de construire des exemples correspondants à ces critères, est
celle donnée par la chirurgie de Dehn sur des nœuds (ou des liens). En effet, si l’on considère un nœud
hyperbolique k, l’extérieur Mk de ce nœud est une variété à bord (qui est un tore) dont l’intérieur
admet une structure hyperbolique. La donnée de cette structure hyperbolique est équivalente à la donnée
d’une représentation de son groupe fondamental PSL2pCq mais puisque l’intérieur de cette variété n’est
évidemment pas compacte, nous ne sommes toujours pas dans le cadre d’étude de cette thèse (l’image de
cette représentation n’est pas co-compacte dans PSL2pCq). Une façon de palier ce problème est d’effectuer
une chirurgie de Dehn, c’est-à-dire de recoller un tore sur le bord de cette variété Mk. Cette opération,
comme nous le rappellerons dans le chapitre, ne dépend que de deux entiers pp, qq et par un théorème de
Thurston, la variété obtenue, notée Mkpp, qq, est hyperbolique sauf pour un nombre fini de couples pp, qq.
De plus, à partir d’un nœud k, il n’est pas difficile d’obtenir une présentation du groupe fondamental de
Mk et le théorème de Van-Kampen permet d’en obtenir une pour le groupe fondamental de Mkpp, qq.

En résumé, pour un nœud hyperbolique k et deux entiers pp, qq pris en dehors d’un ensemble fini de
points de Z2, la variété Mkpp, qq est une variété hyperbolique complète de dimension 3 et son groupe fon-
damental, dont on peut trouver une présentation explicite, admet une représentation fidèle dans PSL2pCq

(qui se relève à SL2pCq par un autre théorème de Thurston) et on obtient ainsi des exemples. Et pour
certains d’entre eux, le critère d’admissibilité est exploitable.

Une autre possibilité pour obtenir de tels exemples est d’utiliser la base de donnée de SnapPy 1 [18].
En particulier, ce logiciel permet d’obtenir une présentation du groupe fondamental d’une variété donnée.

1. SnapPy est un programme qui permet l’étude de la topologie et de la géométrie des variétés de dimension 3.
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Nous traiterons trois exemples, ordonnés par premiers nombres de Betti croissants :

b1 “ 0 Reposant sur le principe expliqué plus haut et est donné par la pn, 1q-chirurgie (avec n ě 5) sur le
nœud en huit.

b1 “ 1 Tiré de la banque de donnée de SnapPy.

b1 “ 2 Utilisant une généralisation de la construction précédente à partir d’un lien.

Nous conclurons ce chapitre et cette thèse par une dernière remarque.

8.1 Groupes de noeuds et chirurgie de Dehn

Nous revenons dans un premier temps sur les définitions et théorèmes importants qui apparaissent
notamment dans la construction d’exemples rapidement donnée dans l’introduction.

8.1.1 Rappels sur la théorie de nœuds

On rappelle qu’un nœud k est l’image d’un plongement différentiable du cercle S1 dans R3 ou dans
S3, la sphère de dimension 3 vue comme compactifié d’Alexandrov de R3.

Définition 8.1.1. Soit k un nœud dans S3. Le groupe du nœud associé à k est le groupe Γk :“ π1pS3 ´kq

et l’extérieur du nœud est la variété compacte de dimension 3, Mk :“ S3 ´ V pkq où V pkq est un voisinage
tubulaire régulier de k.

De plus, à partir d’un « dessin »d’un nœud k, on peut trouver une présentation du groupe du nœud en
utilisant sa présentation de Wirtinger. Nous ne revenons pas sur l’algorithme qui permet cette écriture,
le lecteur intéressé pourra consulter [87].

Définition 8.1.2. On dit qu’un nœud k est hyperbolique si S3 ´ k admet une structure hyperbolique
(une métrique riemannienne complète de courbure sectionnelle constante négative).

Un résultat classique de [97] affirme qu’une variété est hyperbolique si, et seulement si, on peut trouver
une représentation fidèle à image discrète de son groupe fondamental dans PSL2pCq. Dans notre contexte,
un nœud est hyperbolique si l’intérieur de la variété Mk est hyperbolique et donc si l’on peut trouver une
représentation fidèle et discrète du groupe fondamental de l’intérieur de Mk, qui sera alors un réseau non
co-compact de PSL2pCq.

Notons qu’il existe une interaction entre les groupes d’homologie et de cohomologie de Mk et ceux
de Γk. En effet Mk “ ΓkzH3 est un espace classifiant pour Γk (puisque H3 est contractile) et donc
HpMkq “ HpΓkq. De plus, le nombre de Betti d’un tel groupe est toujours égal à 1.

Évidemment, ces variétés ont un bord (homéomorphe à un tore) et ne rentrent pas tel quel dans
la théorie développée ici. On peut cependant appliquer le remplissage de Dehn à une telle variété pour
obtenir une variété sans bord.
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8.1.2 Remplissage de Dehn

Prenons donc une variété hyperbolique Mk de dimension 3 donnée par l’extérieur d’un nœud k (hy-
perbolique donc) et considérons un homéomorphisme

h : BD2 ˆ S1 Ñ BMk

et considérons la variété Mkphq obtenue par recollement du tore plein via h :

Mk Yh D
2 ˆ S1 :“ Mk \D2 ˆ S1{hpxq „ x

Définition 8.1.3. Dans un tore plein D2 ˆ S1, on appelle méridien le lacet BD2 et on appelle longitude
un lacet homologue à zéro dans S3 ´ pD2 ˆ S1q.

Si on découpe BD2 ˆS1 le long du méridien et de la longitude, toute courbe fermée simple de BD2 ˆS1

peut être représentée par une droite de pente p{q P QY t8u et cette courbe est homotope à pm` ql avec
p, q P Z deux entiers premiers entre eux.

m m

l

l

m m

l

l

p{q

Figure 8.1 – Redressement les lacets sur le tore

Lemme 8.1.4. Dans la construction précédente, le type d’homéomorphisme de h est entièrement déter-
miné par la pente hpBD2 ˆ t˚uq, ou de façon équivalente par la paire pp, qq.

Définition 8.1.5. Soit M une variété de dimension 3 dont le bord est un tore. On appelle pp, qq-
remplissage de Dehn le recollement d’un tore plein sur le bord de M via un homéomorphisme de type
pp, qq. On note Mpp, qq la variété ainsi obtenue.

Nous avons le résultat suivant :

Théorème 8.1.6 (Thurston). Soit k un nœud hyperbolique. Pour toute paire pp, qq P Z2, la variété
Mkpp, qq est hyperbolique sauf pour un nombre fini de paires pp, qq.

Un grand intérêt de considérer les variétés fournies par ce procédé est qu’étant donnée une présentation
du groupe associé au nœud k, le théorème de Van-Kampen permet de connaître une présentation du
groupe fondamental de Mkpp, qq facilement.
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Prenons par exemple, la présentation de Wirtinger d’un nœud k :

xx1, ¨ ¨ ¨ , xn| r1, ¨ ¨ ¨ , rhy

avec comme méridien m l’élément x1 et comme longitude l un mot en les xi. Alors, le théorème de
Van-Kampen affirme que

π1pMkpp, qqq “ xx1, ¨ ¨ ¨ , xn| r1, ¨ ¨ ¨ , rh,m
plqy

On peut résumer la construction rapidement expliquée dans l’introduction dans le schéma suivant

Nœud kMk :“ S3 ´Npkq présentation de π1pMkq avec b1 “ 1

Mkpp, qq π1pMkpp, qqq avec b1 “ 0, 1

FMkpp, qq Rpπ1pMkpp, qqqqrRpπ1pMkpp, qqqqa{ SL2pCqs

Exterieur
du

nœud

Présentation
de

Wirtinger

Théorème de

de Van-Kampen

pp, qq-chirurgie

de Dehn

pp, qq-chirurgie

de Dehn

Fibré des

repères

Champ
de

Teichmüller

Variété des

représentations

Restriction
et

quotient

Rigidité
de

Mostow

Figure 8.2 – Schéma de construction de sous-groupes Γ discrets co-compacts.

8.1.3 pn, 1q-Chirurgie sur le nœud en huit (b1 “ 0)

Soit k le nœud en huit représenté en figure 8.3.

Figure 8.3 – Nœud en huit

Considérons la présentation de Wirtinger de M41 [87] :

π1pM41 q “ xa, b, c, d | da “ cd p1q, bc “ ca p2q, cb “ bd p3q, ba “ ad p4qy
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8.1. Groupes de noeuds et chirurgie de Dehn

et simplifions cette présentation en réécrivant les relations p3q et p4q en

b “ada´1

c “bdb´1 ô c “ ada´1dad´1a´1

En remplaçant dans les relations p1q et p2q, on remarque que ces relations donnent lieu une même relation

ada´1dad´1a´1d “ da

On obtient ainsi une présentation du groupe fondamental de M41 :

π1pM41 q “ xa, d | ada´1dad´1a´1da´1d´1y

dont on sait que le méridien est m “ a et la longitude est l “ a´1b´1aba´1bab´1.
Puisque le nœud en huit est achiral 2 on sait que M41 pp, qq “ M41 p´p, qq. Et puisque la chirurgie de

Dehn ne dépend que de la fraction p{q, on a évidemment M41 pp, qq “ M41 p´p,´qq, on peut donc se
restreindre à p, q ě 0.

Théorème 8.1.7 (Thurston, [97, Théorème 4.7]). La variété M41 pp, qq est hyperbolique pour tout couple
pp, qq P N2 différents de p1, 0q, p0, 1q, p1, 1q, p2, 1q, p3, 1q ou p4, 1q.

Soit n un entier plus grand que 5. Avec les rappels précédents, on peut facilement trouver une pré-
sentation du groupe π1pM41 pn, 1qq :

π1pM41 pn, 1qq “ xa, d | ada´1dad´1a´1da´1d´1, an´1b´1aba´1bab´1y

et l’on a
pπ1pM41 pn, 1qqq

ab
“ xa, d | d “ a, any » Z{nZ

Dont on déduit b1pπ1pM41 pn, 1qqq “ 0. Pour simplifier les calculs qui suivront, faisons un changement
dans la présentation de π1pM41 q par d1 :“ da´1 de sorte que

pπ1pM41 pn, 1qqq
ab

“ xa, b | b, any » Z{nZ

Toutes les représentations abéliennes se factorisent sur pπ1pM41 pn, 1qqq
ab

» Z{nZ et on en déduit :

Lemme 8.1.8. Si l’image de ρ P RpΓq est un sous-groupe fini de SL2pCq, alors il est admissible et
h1

F pρq “ h1
Θpρq.

Démonstration. L’admissibilité découle directement du théorème de Kassel (théorème 18) puisque ρ à
forcément une image contenue dans un compact.

Pour la dimension des groupes de cohomologie, il suffit de remarquer que la suite inflation restriction
associée à la suite exacte

0 Ñ Γ0 :“ kerpρq Ñ Γ Ñ ρpΓq Ñ 0

2. c’est-à-dire superposable à son image dans un miroir
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à valeur dans Hρ :“ H0pSL2pCq, π˚Θρq est

0 H1pρpΓq,HΓ0
ρ q H1pΓ,Hρq

H1pΓ0,HρqρpΓq H2pρpΓq,HΓ0
ρ q

res

donne directement un isomorphisme entre les groupes

H1pΓ,Hρq » H1pΓ0,HρqρpΓq

puisque la cohomologie d’un groupe fini est concentrée en degré 0.
De plus, Γ0 est un sous-groupe d’indice fini dans Γ et est donc encore un sous-groupe discret co-

compact de SL2pCq. Il s’ensuit que le plongement du Γ0-module trivial C dans Hρ induit un isomorphisme
entre les premiers groupes de cohomologie (comme dans le cas traité par E. Ghys). On obtient alors le
résultat.

On obtient alors la proposition suivante :

Proposition 8.1.9. Soit n ě 5. Notons Γn une SL2pCq-représentation fidèle et discrète de π1pM41 pn, 1qq.
Alors,

#π0pT pSL2pCq{Γnqq ě n

Démonstration. Par les arguments évoqués précédemment, nous savons que les représentations ρm définies
par

ρmpaq “

˜

e2iπm{n 0
0 e´2iπm{n

¸

, ρmpbq “ Id

sont toutes admissibles. Et évidemment non conjuguées. Le résultat découle donc de l’annulation de
la dimension du groupe H1pΓn, sl2pCqρm q, correspondant à l’espace tangent du champ de caractères
admissibles.

Puisque ρm est abélienne, la représentation laisse stable 3 sous-modules de sl2pCq et le groupe
Z1pΓn, sl2pCqρm q se décompose alors en trois espaces

Z1pΓn, sl2pCqρm q » Z1pΓn,Cρm
` q ‘ Z1pΓn,Cρm

´ q ‘ Z1pΓn,Cq

Le dernier élément de cette décomposition est facile à calculer puisque la structure de Γn-module de ces
coefficients est triviale et on déduit Z1pΓn,Cq “ HompΓn,Cq “ Cb1pΓnq, et il est donc de dimension nulle.

De plus, Z1pΓn,Cρm
` q » Z1pΓn,Cρm

´ q, on restreint donc l’étude à Z1pΓn,Cρm
` q. Les relations de Γn

et les conditions de cocycle permettent de calculer explicitement les équations que doivent satisfaire les
applications c : Γn Ñ Cρm

` pour définir des éléments de Z1pΓn,Cρm
` q. Notons ω :“

`

e2iπm{n
˘2 et soit

c P C1pΓn,C
ρj

` q. Les conditions de cocycles s’écrivent

cpasq “ cpaq ` ωcpsq, cpbsq “ cpbq ` cpsq

où s est un mot en a, a´1, b et b´1.
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En utilisant ces conditions de cocycles, la première relation de Γn devient :

0 “ cpab3ab´1a´2b´1q

“ cpaq ` ωcpb3ab´1a´2b´1q

“ cpaq ` 3ωcpbq ` ωcpab´1a´2b´1q

...

“ 2ωcpaq ` p´1 ` 3ω ´ ω2qcpbq

Qui est non-triviale pour tout m P N. Et la deuxième relation est en fait triviale, puisque :

0 “ cpan´1b´1aba´1bab´1q

“ cpan´1q ` ωn´1cpb´1aba´1bab´1q

“ p1 ` ω ` ¨ ¨ ¨ ` ωn´2qcpaq ` ωn´1cpb´1q ` ωn´1cpaba´1bab´1q

“ p1 ` ω ` ¨ ¨ ¨ ` ωn´2qcpaq ´ ωn´1cpbq ` ωn´1cpaq ` ωncpba´1bab´1q

“ p1 ` ω ` ¨ ¨ ¨ ` ωn´1qcpaq ´ ωn´1cpbq ` cpba´1bab´1q

“ p1 ` ω ` ω2 ` ¨ ¨ ¨ ` ωn´1q
loooooooooooooooomoooooooooooooooon

“0

cpaq ´ ωn´1cpbq ` cpbq ` cpa´1q ` ω´1cpbq ` ω´1cpaq ` cpb´1q

“ ω´1cpbq ´ ωn´1cpbq
looooooooooomooooooooooon

“0

` cpbq ` cpb´1q
loooooomoooooon

“0

` cpa´1q ` ω´1cpaq
loooooooooomoooooooooon

“0

Puisqu’un cocycle c P Z1pΓn,Cρm
` q est défini par ses images cpaq P C et cpbq P C et doit respecter une

condition linéaire, on conclut que

dimZ1pΓn,Cρm
` q “ 2 ´ 1 “ 1

Finalement on a

dimH1pΓn, sl2pCqρm q “ dimZ1pΓn,Cq ` 2 dimZ1pΓn,Cρm
` q ´ dimB1pΓn, sl2pCqρm q

“ 2 ˆ 1 ´ p3 ´ h0pρmqq

“ 2 ´ 3 ` 1 “ 0

comme annoncé.

Pour conclure cet exemple, terminons par une observation qui montre l’apport de nos résultats. Le
théorème principal de [31] nous permet d’affirmer que l’espace de Kuranishi de SL2pCq{Γn est un point.
Ici nous montrons que l’espace de Teichmüller de cette variété admet au moins n composantes connexes.

8.1.4 Variété m199p´4, 1q (b1 “ 1)

Le choix, dans la base de données de SnapPy, de l’exemple qui suit est un peu arbitraire, cependant
le coût de calcul d’une représentation fidèle et celui du critère d’admissibilité nous pousse vers le choix
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d’une variété hyperbolique de dimension 3 admettant un groupe fondamental dont la présentation admet
des relations les plus courtes possibles.

Parmi les variétés qui satisfont ces critères, nous proposons de traiter le cas de la variété m199p´4, 1q

dont le groupe fondamental admet la présentation suivante

π1pm199p´4, 1qq “ xa, b | pa3b´1q2pa2b2q2a2b´1, bpa´1b3q4a´1ba´2b´2a´2y

Afin de simplifier les notations, notons Γ :“ π1pm199p´4, 1qq.
Une représentation fidèle et discrète i de ce groupe dans SL2pCq, donnée par SnapPy, est approchée

par

ipaq «

˜

0 0, 8 ` 0, 92i
´0, 53 ` 0, 61i 0, 41 ´ 0, 61i

¸

, ipbq «

˜

´0, 01 ` 2, 35i 0, 29 ´ 2, 57i
´1, 39 ` 1, 6i 1, 71 ´ 2, 02i

¸

Puisque b1pΓq “ 1, on sait que ρ0 est un point lisse de RpΓqa [31] et on a alors

Proposition 8.1.10. Il existe un réel α tel que l’on ait une application injective

ϕ : Bα X V ãÑ RpΓqa

où Bα est la boule centrée en Id P SL2pCq déterminée par les matrices de rayon spectral strictement
inférieur à α.

Démonstration. Nous l’avons déjà vu, toute représentation de Γ qui se trouve dans la composante connexe
de la représentation triviale est abélienne (puisque bpΓq “ 1) et se factorise donc sur

Γab “ xa, b | a2b, ra, bsy

Une représentation abélienne ρ est alors entièrement déterminée par son image sur a. De plus, l’admissi-
bilité d’une telle représentation ρ s’exprime sur la longueur de translation de ρ et donc uniquement sur la
matrice ρpaq. Pour que ρ soit admissible, il suffit donc que cette longueur de translation soit strictement
inférieur à celle de ipaq, que l’on note α.

L’application ϕ est alors obtenue de la façon suivante :

ϕ : A P Bα ÞÑ ρA P RpΓqa

avec ρA définie par
ρzpaq :“ A, ρzpbq :“ A´2

En combinant cette proposition avec le théorème 6.4.5 on obtient alors

Corollaire 8.1.11. Soit z P C, 1 ď |z| ă 1.3 tel que ρz P V définit par

ρzpaq :“
˜

z 0
0 z´1

¸

, ρzpbq :“
˜

z´2 0
0 z2

¸
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alors, la famille de Kuranishi de Mρz est donnée par le germe de la famille

tMρz`ε
| ε P Du

D

pointée en 0.

On laisse au lecteur le soin d’appliquer de la même manière le deuxième cas du théorème 6.4.5.

En identifiant les représentations conjugués, on a le corollaire suivant :

Corollaire 8.1.12. Il existe un réel α ą 1, 3 tel que l’on ait une injection

pBα X V q{ „ãÑ T pSL2pCq{ipπ1pm199p´4, 1qqqq

où A „ B si les deux matrices sont conjuguées.

8.1.5 pp0, 1q, p0, 1qq-chirurgie sur le lien 92
4 (b1 “ 2)

Avant de continuer avec un troisième exemple, il nous sera utile de « classifier »les différentes représen-
tations selon des critères utiles au calcul. Plutôt que de faire une liste de définitions puis de propositions,
nous résumons cette classification dans un tableau. Voici d’abord quelque notations :

‚ B Ă SL2pCq le sous-groupe de Borel, c’est-à-dire le groupe des matrices triangulaires supérieures,

‚ P Ă SL2pCq le groupe des éléments paraboliques, c’est-à-dire les matrices triangulaires supérieures
avec ˘1 sur la diagonale,

‚ Diag Ă SL2pCq le groupe des matrices diagonales,

‚ Z “ t˘ Idu Ă SL2pCq le centre de SL2pCq.

Soit Γ Ă SL2pCq un sous-groupe discret co-compact et soit ρ P RpΓq. A conjugaison près, on a :

129



Chapitre 8 – Exemples

Nom Critère Propriétés

Irréductible ρpΓq Ć B

non-abélienne
irréductible
h0pρq “ 0

Opρq fermée

non-abéliennes réductibles
ρpΓq Ă B

non-abélienne
réductible

ρpΓq Ć P
h0pρq “ 0

Opρq non-fermée

Parabolique
ρpΓq Ă P

abélienne
réductible

ρpΓq Ć Z
h0pρq “ 1

Opρq non-fermée

Diagonale
ρpΓq Ă Diag

abélienne
complètement réductible

ρpΓq Ć Z
h0pρq “ 1

Opρq fermée

Centrale ρpΓq Ă Z

triviale
complètement réductible

h0pρq “ 3
Opρq fermée

Le lien entre la complète réductibilité et la fermeture de l’orbite d’une représentation est fait dans [90,
Theorem 30] et celui entre le critère abélien et la fonction h0 est le théorème 5.3.6.

Considérons le lien 92
4 et faisons simultanément deux p0, 1q-chirurgies de Dehn sur chacun des nœuds.

Figure 8.4 – Lien 92
4

La variété obtenue est une variété fermée orientable avec un premier nombre de Betti égal à 2. Elle a été
découverte par Dunfield et a un volume de 4.7135 ¨ ¨ ¨ , c’est aussi une variété qui fibre sur le cercle avec
une surface de genre 2 comme fibre (voir [30]). Elle est répertoriée dans SnapPy sous le nom v1539p5, 1q

mais nous nous contenterons du nom plus sobre de M .
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Une présentation de son groupe fondamental est

π1pMq “ xa, b | pabq2apabq´2b´1pabq2apabq´2b3pbaq´2, a4pabq´2b4pbaq´2y

Pour les représentations non-abéliennes, nous nous servirons du lemme suivant :

Lemme 8.1.13. Soit A et B deux matrices non commutantes dans SL2pCq. Alors, à conjugaison près,

A “

˜

x 1
0 x´1

¸

, B “

˜

y 0
r y´1

¸

On commence par construire une représentation i fidèle et discrète de π1pMq. Soit

ipaq “

˜

x 1
0 x´1

¸

, ipbq “

˜

y 0
r y´1

¸

Les calculs avec Sage affirment que la relation a4pabq´2 ´ babab´4 “ 0 donne, par exemple,

y “ x et r “ ´
x8 ` 3x4 ` 1
x6 ` x2

Avec ces considérations, la première relation nous donne x “ 1
2

a

´i
?

15 ´ 1.
Posons Γ :“ ipπ1pMqq et regardons maintenant les représentations de ce groupe, non injectives. On

remarque que :

‚ Les calculs à effectuer pour montrer l’admissibilité d’autres représentations irréductibles sont en
général difficiles,

‚ En revanche, pour les représentations non-abéliennes réductibles, en utilisant le lemme on peut
supposer r “ 0 et les relations du groupe π1pMq donne deux relations :

x6py2 ´ 1q ` x4py2 ´ y´2q ` x2p´y6 ` y2q ´ y4 ` y2 “ 0

et
x6py3 ´ y2q ` x4py6 ´ y4 ` y2 ´ 1q ` x2p´y6 ` y4 ` y2 ` 1q ´ y4 ` y2 “ 0

on obtient ensuite par le calcul 5 solutions à ce système dont on déduit 5 représentations non-
abéliennes réductibles approximées par

ρpaq ρpbq
˜

´0, 31 ˘ 0, 82i 1
0 p´0, 31 ˘ 0, 82iq´1

¸ ˜

0, 53 ˘ 0, 77i 0
0 p0, 53 ˘ 0, 77iq´1

¸

˜

´0, 18 ˘ 0, 75i 1
0 p´0, 18 ˘ 0, 75iq´1

¸ ˜

´0, 54 ¯ 0, 69i 0
0 p´0, 54 ¯ 0, 69iq´1

¸

˜

1, 09 ´ 0, 77i 1
0 p1, 09 ´ 0, 77iq´1

¸ ˜

1, 1 ´ 0, 35i 0
0 p1, 1 ´ 0, 35iq´1

¸

là encore, le critère d’admissibilité n’est pas exploitable par le calcul dans ce cas.
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Chapitre 8 – Exemples

‚ Remarquons que dans le cas de représentations abéliennes, les relations deviennent triviales et on
obtient que l’ensemble des représentations abéliennes est isomorphe à l’espace des paires de matrices
commutantes.
Évidemment, toutes les paires de matrices ne permettent pas de former une représentation ad-
missible. On peut cependant se restreindre à un compact de SL2pCq. On en déduit le corollaire
suivant

Corollaire 8.1.14. On a le plongement suivant

tpA,Bq P SUp2q ˆ SUp2q | rA,Bs “ Idu X V ãÑ RpΓqa

Démonstration. Pour chaque paire de matrices pA,Bq P SUp2qˆSUp2q on définit une représentation
par ρpaq :“ A, ρpbq :“ B et le raisonnement précédent en assure l’admissibilité.

8.2 Représentations à image Zariski-denses

Nous terminons cette thèse par une remarque.
En démontrant la virtually Haken conjecture en 2012, Agol démontra le résultat suivant :

Théorème 8.2.1 (Corollary 1.2 [2]). Soit M une variété hyperbolique fermée de dimension 3. Alors, il
existe un revêtement fini ĂM Ñ M tel que ĂM fibre au dessus du cercle. De plus, π1pMq est LERF et large,
c’est-à-dire qu’il existe un sous-groupe normal N Ĳ G qui se surjecte sur un groupe libre non-abélien.

Avec ce résultat, on peut construire des représentations admissibles à image Zariski-denses. On consi-
dère un sous-groupe discret co-compact Γ dans SL2pCq, par le lemme de Selberg, quitte à prendre
un sous-groupe d’indice fini, on peut le supposer sans torsion. On utilise le résultat précédent qui nous
affirme l’existence d’un sous-groupe normal Γ0 d’indice fini dans Γ qui se surjecte sur F2 le groupe libre à
deux générateurs. Un théorème de Kuranishi [64, Theorem 7] assure que l’on peut trouver des éléments
a et b dans un voisinage arbitrairement petit de Id dans SL2pCq tel que le groupe xa, by soit Zariski-dense
dans SL2pCq.

Cette construction fourni de nombreux exemples de représentations admissibles qui ont en particu-
lier des images non-abéliennes (confer les exemples donnés par Ghys [31, p. 135-136]). Je remercie N.
Tholozan pour m’avoir suggéré cette construction.
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PUBLICATION

Titre : "On the Teichmüller stack of SL2pCq{Γ".
Résumé : Let Γ be a discrete torsion-free co-compact subgroup of SL2pCq. E. Ghys has shown in [31] that
the Kuranishi space of M “ SL2pCq{Γ is given by the germ of the representation variety HompΓ,SL2pCqq

at the trivial morphism and gave a description of the complex structures given by representations. In
this note, we prove that for any admissible representation, i.e. which allows to construct compact com-
plex manifold by this description, the representation variety (pointed at this representation), leads to a
complete family (even at non-reduced singular points). Hence, we will consider the (admissible) character
stack rRpΓqa{ SL2pCqs, where RpΓqa stands for the open subset formed by admissible representations
with SL2pCq acting by conjugation on it and show that this quotient stack is an open substack of the
Teichmüller stack of M.
Lien ArXiv : https://arxiv.org/pdf/2102.12364.pdf.
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Titre : Espace de Teichmüller du fibré des repères d’une 3-variété hyperbolique réelle.

Mot clés : Théorie des déformations, variétés de représentations et champs analytiques.

Résumé : Cette thèse a pour but de poursuivre et
de généraliser, en utilisant le point de vue global of-
fert par les champs, l’étude locale faite par Ghys
concernant les déformations des structures complexes
des espaces homogènes de SL2pCq. Dans cet article,
l’auteur montre que la déformation de l’holonomie de
la pSL2pCq ˆ SL2pCq, SL2pCqq-structure complète d’un
quotient SL2pCq{Γ (où Γ est un sous-groupe discret
de SL2pCq, co-compact et sans torsion) permet de
construire une famille de structures complexes sur ce
quotient. Plus précisément, il montre que le germe ana-
lytique de la variété de représentation RpΓq de Γ dans
SL2pCq, pointée au morphisme trivial, détermine l’es-
pace de Kuranishi de SL2pCq{Γ. Nous montrons que
par cette même construction, la famille tautologique au
dessus d’un ouvert de Zariski V de RpΓq reste com-
plète en chaque point correspondant une représenta-
tion admissible, c’est-à-dire qui correspond à l’holono-
mie d’une structure complète. Par ailleurs, les travaux
de Kassel sur l’admissibilité de ces représentations per-
mettent d’affirmer que l’ensemble des représentations

admissibles RpΓq
a constitue un ouvert de RpΓq. Notons

que SL2pCq agit par conjugaison sur RpΓq
a en préser-

vant les classes d’équivalence de structures complexes
et, qu’en général, la non-trivialité des SL2pCq-orbites
met en défaut le critère de versalité de cette famille. Fi-
nalement, le calcul du groupe des automorphismes C8-
isotopes à l’identité, qui correspond au groupe d’isotro-
pie d’une structure complexe dans l’espace de Teichmül-
ler, permet d’affirmer que le champ quotient V { SL2pCq

est un sous-champ ouvert du champ de Teichmüller de
SL2pCq{Γ. Pour terminer, remarquons que le fibré des
repères d’une variété M compacte hyperbolique fermée
de dimension 3 s’identifie naturellement au quotient de
PSL2pCq par une PSL2pCq-représentation fidèle et dis-
crète de π1pMq. Par un résultat de Thurston, cette re-
présentation se relève toujours à SL2pCq et on peut donc
voir le quotient SL2pCq{ Čπ1pMq comme un double revê-
tement du fibré des repères de M . Ceci justifie l’abon-
dance de ces espaces ainsi que le nom donné à cette
thèse.

Title: Teichmüller space of the frame bundle of a real hyperbolic 3-fold.

Keywords: Deformation theory, representation and analytic stacks.

Abstract: This thesis aims to pursue and general-
ize, by using the global point of view offered by the
stacks, the local study made by Ghys concerning the
deformations of complex structures of the homogeneous
spaces of SL2pCq. In this article, the author shows
that the deformation of the holonomy of the com-
plete pSL2pCq ˆ SL2pCq, SL2pCqq-structure of a quotient
SL2pCq{Γ (where Γ is a discrete subgroup of SL2pCq,
co-compact and torsion free) allows to build a family
of complex structures on this quotient. More precisely,
he shows that the analytic germ of the representation
variety RpΓq of Γ in SL2pCq, pointed at the trivial mor-
phism, determines the Kuranishi space of SL2pCq{Γ. We
show that by this same construction, the tautological
family above a Zariski open subset V in RpΓq remains
complete at each point corresponding to an admissi-
ble representation, i.e. which corresponds to the holon-
omy of a complete structure. Moreover, Kassel’s work
on the admissibility of these representations allows us

to affirm that the set RpΓq
a of admissible representa-

tions is open in RpΓq. Note that SL2pCq acts by con-
jugation on RpΓq

a preserving the equivalence classes of
complex structures and, in general, the non-triviality
of SL2pCq-orbits implies the non-versality of this fam-
ily. Finally, the computation of the group of automor-
phisms which are C8-isotopic to the identity, which cor-
responds to the isotropy group of a complex structure
in Teichmüller space, allows us to affirm that the quo-
tient stack V { SL2pCq is an open substack of the Teich-
müller stack of SL2pCq{Γ. To finish, let us notice that
the frame bundle of a closed hyperbolic compact man-
ifold M of dimension 3 is naturally identified with the
quotient of PSL2pCq by a faithful and discrete PSL2pCq-
representation of π1pMq. By a result of Thurston, this
representation lifts to SL2pCq and we can therefore see
the quotient SL2pCq{ Čπ1pMq as a double covering of the
bundle of reference frames of M . This justifies the abun-
dance of these spaces as well as the name of this thesis.
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